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Recollections.

Last week you learned

• The implicit function theorem. Think of the geometric intuition.

• The definition of higher differentiability.

• Mixed partial derivatives. For a function f : R2 → R, Prof. FONG
proved in his lecture that if fx, fy exists near (0, 0), differentiable at
(0, 0), then fxy(0, 0) = fyx(0, 0).

1 Warm-up.

Heat (diffusion) Equation. Verify that the function

u(x, t) =
1

2a
√
πt

e−
x2

4a2t , t > 0, x ∈ R

satisfies the Heat equation

∂u

∂t
− a2

∂2u

∂x2
= 0

Harmonic Function. The Laplace operator (in Euclidean spaces) is

∆ : f 󰀁→
󰁓n

i=1
∂2f
∂x2

i
for f ∈ C2(Rn). A function in C2(Rn) is called har-

monic if ∆f = 0. Verify the following functions are harmonic:

• f(x, y) = ln(x2 + y2)
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• f(x, y) = ex cos y

• f(x, y) = x2 − y2

Judge the following statement. Let U ⊆ Rn be an open set in R2,
f ∈ C1(U), fx = fy = 0 in U , then f is constant on U .

2 Mixed Partial Derivatives.

A Counter-example. Let

f(x, y) =

󰀫
xy x2−y2

x2+y2
(x, y) ∕= (0, 0)

0 (x, y) = (0, 0)

Prove that fxy(0, 0) ∕= fyx(0, 0).

A Theorem. For a function f : R2 → R, if fx, fy exists near (0, 0),
fxy exists near (0, 0) and is continuous at (0, 0), then fyx(0, 0) exists and
fxy(0, 0) = fyx(0, 0).

3 Compactness Revisited.

f, g : R2 → R are C1, such that fxgy − fygx ∕= 0 on R2. Show that
the equation f(x, y) = g(x, y) = 0 only have finitely many solutions in any
bounded closed set E ⊆ R2.

4 The Boss.

Let D ⊆ R2 be a convex open set in R2 containing (0, 0), f ∈ C1(D)
satisfies xfx + yfy = 0 in D. Show that f(x, y) is constant in D.

Remark 4.0.1. Think about what role does the convexness of D play in
this problem? What if we drop this condition?

The hint is on the next page.
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(Hint: first prove that f is constant along each ray starting from zero.
Then consider the behavior around zero.)
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