Tutorial 3 Problems

CHEN Yanze*

September 25, 2019

Recollections.

Last week you learned

- The implicit function theorem. Think of the geometric intuition.
- The definition of higher differentiability.
- Mixed partial derivatives. For a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, Prof. FONG proved in his lecture that if f_{x}, f_{y} exists near $(0,0)$, differentiable at $(0,0)$, then $f_{x y}(0,0)=f_{y x}(0,0)$.

1 Warm-up.

Heat (diffusion) Equation. Verify that the function

$$
u(x, t)=\frac{1}{2 a \sqrt{\pi t}} e^{-\frac{x^{2}}{4 a^{2} t}}, t>0, x \in \mathbf{R}
$$

satisfies the Heat equation

$$
\frac{\partial u}{\partial t}-a^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Harmonic Function. The Laplace operator (in Euclidean spaces) is $\Delta: f \mapsto \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}$ for $f \in C^{2}\left(\mathbf{R}^{n}\right)$. A function in $C^{2}\left(\mathbf{R}^{n}\right)$ is called harmonic if $\Delta f=0$. Verify the following functions are harmonic:

- $f(x, y)=\ln \left(x^{2}+y^{2}\right)$

[^0]- $f(x, y)=e^{x} \cos y$
- $f(x, y)=x^{2}-y^{2}$

Judge the following statement. Let $U \subseteq \mathbf{R}^{n}$ be an open set in \mathbf{R}^{2}, $f \in C^{1}(U), f_{x}=f_{y}=0$ in U, then f is constant on U.

2 Mixed Partial Derivatives.

A Counter-example. Let

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Prove that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
A Theorem. For a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, if f_{x}, f_{y} exists near $(0,0)$, $f_{x y}$ exists near $(0,0)$ and is continuous at $(0,0)$, then $f_{y x}(0,0)$ exists and $f_{x y}(0,0)=f_{y x}(0,0)$.

3 Compactness Revisited.

$f, g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ are C^{1}, such that $f_{x} g_{y}-f_{y} g_{x} \neq 0$ on \mathbf{R}^{2}. Show that the equation $f(x, y)=g(x, y)=0$ only have finitely many solutions in any bounded closed set $E \subseteq \mathbf{R}^{2}$.

4 The Boss.

Let $D \subseteq \mathbf{R}^{2}$ be a convex open set in \mathbf{R}^{2} containing $(0,0), f \in C^{1}(D)$ satisfies $x f_{x}+y f_{y}=0$ in D. Show that $f(x, y)$ is constant in D.

Remark 4.0.1. Think about what role does the convexness of D play in this problem? What if we drop this condition?

The hint is on the next page.
(Hint: first prove that f is constant along each ray starting from zero. Then consider the behavior around zero.)

[^0]: *Department of Mathematics, the UST, HK.

