HIGHER ORDER DIFFERENTIABILITY

FREDERICK TSZ-HO FONG

Definition 1. $f : \mathbb{R}^n \to \mathbb{R}$ is said to be k-th differentiable at $\vec{a} \in \mathbb{R}^n$ if there exists a k-th degree polynomial $P_k : \mathbb{R}^n \to \mathbb{R}$ such that

$$f(\vec{x}) = P_k(\vec{x}) + o(\|\vec{x} - \vec{a}\|^k)$$
 as $\vec{x} \to \vec{a}$.

Theorem 2. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ has first order partial derivatives $\frac{\partial f}{\partial x_i}$'s near $\vec{a} \in \mathbb{R}^n$, and that all $\frac{\partial f}{\partial x_i}$'s are differentiable at \vec{a} , then f is twice differentiable at \vec{a} .

Proof. It is given that $\frac{\partial f}{\partial x_i}$ is differentiable at \vec{a} for any i, so its partial derivatives $\frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_i}$ at \vec{a} exist, and we have

(0.1)
$$\frac{\partial f}{\partial x_i}(\vec{x}) = \frac{\partial f}{\partial x_i}(\vec{a}) + \sum_{j=1}^n \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_i} \Big|_{\vec{a}} (x_j - a_j) + o(\|\vec{x} - \vec{a}\|) \text{ as } \vec{x} \to \vec{a}.$$

Now we claim that f can be approximated by the following quadratic polynomial near \vec{a} :

$$P_2(\vec{x}) := f(\vec{a}) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \bigg|_{\vec{a}} (x_i - a_i) + \sum_{i,j=1}^n \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_i} \bigg|_{\vec{a}} (x_i - a_i)(x_j - a_j) + \sum_{i=1}^n \frac{\partial}{\partial x_i} \frac{\partial f}{\partial x_i} \bigg|_{\vec{a}} (x_i - a_i)(x_j - a_j) + \sum_{i=1}^n \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i} \bigg|_{\vec{a}} (x_i - a_i)(x_j - a_j) + \sum_{i=1}^n \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i} \bigg|_{\vec{a}} (x_i - a_i)(x_j - a_j) \bigg|_{\vec{a}} (x_i - a_i)(x_j - a_j)(x_j - a_j)$$

For each \vec{x} near \vec{a} , we connect \vec{a} and \vec{x} a straight path:

$$\gamma(t) := \vec{a} + t(\vec{x} - \vec{a}), \ 0 \le t \le 1$$

In particular, $\gamma(0) = \vec{a}$ and $\gamma(1) = \vec{x}$. Consider the composition $g(t) := f(\gamma(t))$. One can easily verify (left as an exercise) by the chain rule that

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \Big|_{\gamma(t)} (x_i - a_i)$$
$$g''(t) = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_i} \Big|_{\gamma(t)} (x_j - a_j) (x_i - a_i)$$

Inspired by the one-variable case, we consider the error term between g and its second-order approximation near t = 0:

$$E_2(t) := g(t) - g(0) - g'(0)t - \frac{g''(0)}{2}t^2.$$

Note that $E_2(1) = f(\vec{x}) - P_2(\vec{x})$ which we want to show it is of order $o(\|\vec{x} - \vec{a}\|^2)$.

By Cauchy's mean value theorem applied to E_2 and t^2 , there exists $c \in (0,1)$ such that

$$E_2(1) = \frac{E_2(1) - E_2(0)}{1^2 - 0^2} = \frac{E_2'(c)}{2c} = \frac{g'(c) - g'(0) - g''(0)c}{2c}.$$

By the results of the above chain rule exercise and (0.1), we have:

$$E_{2}(1)$$

$$= \frac{1}{2c} \left[\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}} \Big|_{\gamma(c)} - \frac{\partial f}{\partial x_{i}} \Big|_{\vec{a}} \right) (x_{i} - a_{i}) - c \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \frac{\partial f}{\partial x_{i}} \Big|_{\vec{a}} (x_{i} - a_{i})(x_{j} - a_{j}) \right]$$

$$= \frac{1}{2c} \left\{ \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \frac{\partial f}{\partial x_{i}} \Big|_{\vec{a}} (\gamma_{j}(c) - a_{j}) + o(\|\gamma(c) - \vec{a}\|) \right] (x_{i} - a_{i}) - c \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \frac{\partial f}{\partial x_{i}} \Big|_{\vec{a}} (x_{i} - a_{i})(x_{j} - a_{j}) \right\}.$$

Note that $\gamma(c) - \vec{a} = c(\vec{x} - \vec{a})$ and so $\gamma_j(c) - a_j = c(x_j - a_j)$, so after simplification we get:

$$|E_2(1)| = \left| o\big(\|\vec{x} - \vec{a}\| \big) \cdot \sum_i (x_i - a_i) \right| \le 0\big(\|\vec{x} - \vec{a}\|^2 \big)$$

As a result, we have

$$|f(\vec{x}) - P_2(\vec{x})| \le o(\|\vec{x} - \vec{a}\|^2),$$

as desired.

Corollary 3. If $f : \mathbb{R}^n \to \mathbb{R}$ is C^2 on an open set $U \subset \mathbb{R}^n$, i.e. its first partial derivatives are C^1 on U, then f is twice differentiable on U.

Proof. By the fact that C^1 implies differentiability.

For higher-order differentiability, we have a similar theorem and corollary:

Theorem 4. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ has (k-1)-th order partial derivatives near \vec{a} , and that all of them are differentiable at \vec{a} , then f is k-th differentiable at \vec{a} .

Proof. Similar to the twice differentiable proof. The only thing that needs to be changed is that we should consider: (k)

$$E_k(t) := g(t) - g(0) - g'(0)t - \frac{g''(0)}{2!}t^2 - \dots - \frac{g^{(k)}(0)}{k!}t^k.$$

Apply Cauchy's mean value theorem on $E_k(t)$ and t^k to estimate $E_k(1)$.

Corollary 5. If $f : \mathbb{R}^n \to \mathbb{R}$ is C^k on an open set U in \mathbb{R}^n , then it is k-th differentiable on U.

 \Box U,