Tutorial 2 Problems

CHEN Yanze*

September 18, 2019

Recollections.

Last week you learned

- Limit of multi-variable functions.
- Differentiability of multi-variable functions. Recall that
 - (a) $f : \mathbf{R}^2 \to \mathbf{R}$ is differentiable at $(a, b) \Rightarrow f$ is continuous at (a, b)and the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ at (a, b) exists.
 - (b) The partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist near (a, b) and are continuous $\Rightarrow f$ is differentiable at (a, b).
- The Jacobian of a multi-variable vector-valued function, the chain rule.
- The inverse function theorem.

Theorem 0.0.1. Suppose $F : \mathbf{R}^n \to \mathbf{R}^n$ is C^1 near 0, F(0) = 0, (DF)(0) = I. Then there exists r > 0 s.t. $F|_{B_r} : B_r \to F(B_r)$ is bijective, and the inverse map $F^{-1} : F(B_r) \to B_r$ is also C^1 .

Remark 0.0.2. It is cumbersome, yet possible, to define a function to be C^1 (or even continuous!) on a generic subset $A \subseteq \mathbb{R}^n$ which is NOT open. However in our setting above, it is possible to prove that $F(B_r)$ is OPEN. If we only suppose F to be continuous, this result is called **invariance of domains** whose original proof involves the Browner's fixed point theorem, or other input from algebraic topology which are far from trivial, such as the Jordan closed curve theorem. Is there a simple proof in our setting that f is C^1 ?

^{*}Department of Mathematics, the UST, HK.

Recall the idea of the proof: Consider the map $T_y : \mathbf{R}^n \to \mathbf{R}^n, x \mapsto x - f(x) + y$. Try to prove that for r sufficiently small and $y \in B_r$, T_y maps B_r into B_r , and T_y is a contraction map. By the Banach's contraction mapping theorem, T_y admits a fixed point, namely there $\exists ! x \in B_r$ s.t. f(x) = y, so we can costruct the inverse map. Then verify that the inverse map is C^1 .

1 Warm-Up.

• Let $f : \mathbf{R} \to \mathbf{R}^3$ be a vector-valued function such that ||f(t)|| = 1 for any $t \in \mathbf{R}$. Prove that $f'(t) \cdot f(t) = 0$ for any $t \in \mathbf{R}$. What is the geometric meaning of this result?

Remark 1.0.1. This gives an example of immersion of manifolds.

• What can you say about $\lim_{(x,y)\to(+\infty,+\infty)} (\frac{xy}{x^2+y^2})^{x^2}$?

2 Various (counter-)examples.

• Let

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

• Let

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0.$

• Let

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^3} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that $F(r) = f(r \cos \theta, r \sin \theta)$ is continuous at r = 0 for any fixed $\theta \in [0, 2\pi]$, but f is not continuous at (0, 0).

• Let (again)

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that f has partial derivatives at (0,0), but f is not differentiable at (0,0).

• Let

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that f is differentiable at (0,0), but the partial derivatives are not continuous at (0,0).

3 About Change of the Order.

• Let

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that $\lim_{x\to 0} \lim_{y\to 0} f(x,y) \neq \lim_{y\to 0} \lim_{x\to 0} f(x,y)$.

• Let

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{y} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, but for $x \neq 0$, $\lim_{y\to 0} f(x,y)$ does not exists, so $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ does not make sense.

• Prove that if $\lim_{(x,y)\to(0,0)} f(x,y) = A$ exists, and for $x \neq 0$, $\lim_{y\to 0} f(x,y)$ exists, then $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = A$.

4 The Boss.

If $f : \mathbf{R}^2 \to \mathbf{R}$ satisfies:

- f(x, y) is monotone in x for any $y \in \mathbf{R}$;
- f(x, y) is conitnuous in x for any $y \in \mathbf{R}$, continuous in y for any $x \in \mathbf{R}$;

Prove that f is continuous.