Tutorial 2 Problems

CHEN Yanze*

September 18, 2019

Recollections.

Last week you learned

- Limit of multi-variable functions.
- Differentiability of multi-variable functions. Recall that
(a) $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is differentiable at $(a, b) \Rightarrow f$ is continuous at (a,b) and the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ at (a, b) exists.
(b) The partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist near (a, b) and are continuous $\Rightarrow f$ is differentiable at (a, b).
- The Jacobian of a multi-variable vector-valued function, the chain rule.
- The inverse function theorem.

Theorem 0.0.1. Suppose $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is C^{1} near $0, F(0)=0$, $(D F)(0)=I$. Then there exists $r>0$ s.t. $\left.F\right|_{B_{r}}: B_{r} \rightarrow F\left(B_{r}\right)$ is bijective, and the inverse map $F^{-1}: F\left(B_{r}\right) \rightarrow B_{r}$ is also C^{1}.

Remark 0.0.2. It is cumbersome, yet possible, to define a function to be C^{1} (or even continuous!) on a generic subset $A \subseteq \mathbf{R}^{n}$ which is NOT open. However in our setting above, it is possible to prove that $F\left(B_{r}\right)$ is OPEN. If we only suppose F to be continuous, this result is called invariance of domains whose original proof involves the Browner's fixed point theorem, or other input from algebraic topology which are far from trivial, such as the Jordan closed curve theorem. Is there a simple proof in our setting that f is C^{1} ?

[^0]Recall the idea of the proof: Consider the map $T_{y}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, x \mapsto$ $x-f(x)+y$. Try to prove that for r sufficiently small and $y \in B_{r}$, T_{y} maps B_{r} into B_{r}, and T_{y} is a contraction map. By the Banach's contraction mapping theorem, T_{y} admits a fixed point, namely there $\exists!x \in B_{r}$ s.t. $f(x)=y$, so we can costruct the inverse map. Then verify that the inverse map is C^{1}.

1 Warm-Up.

- Let $f: \mathbf{R} \rightarrow \mathbf{R}^{3}$ be a vector-valued function such that $\|f(t)\|=1$ for any $t \in \mathbf{R}$. Prove that $f^{\prime}(t) \cdot f(t)=0$ for any $t \in \mathbf{R}$. What is the geometric meaning of this result?

Remark 1.0.1. This gives an example of immersion of manifolds.

- What can you say about $\lim _{(x, y) \rightarrow(+\infty,+\infty)}\left(\frac{x y}{x^{2}+y^{2}}\right)^{x^{2}}$?

2 Various (counter-)examples.

- Let

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

- Let

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.

- Let

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{3}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that $F(r)=f(r \cos \theta, r \sin \theta)$ is continuous at $r=0$ for any fixed $\theta \in[0,2 \pi]$, but f is not continuous at $(0,0)$.

- Let (again)

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f has partial derivatives at $(0,0)$, but f is not differentiable at $(0,0)$.

- Let

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f is differentiable at $(0,0)$, but the partial derivatives are not continuous at $(0,0)$.

3 About Change of the Order.

- Let

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$.

- Let

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{y} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$, but for $x \neq 0, \lim _{y \rightarrow 0} f(x, y)$ does not exists, so $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$ does not make sense.

- Prove that if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=A$ exists, and for $x \neq 0, \lim _{y \rightarrow 0} f(x, y)$ exists, then $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=A$.

4 The Boss.

If $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ satisfies:

- $f(x, y)$ is monotone in x for any $y \in \mathbf{R}$;
- $f(x, y)$ is conitnuous in x for any $y \in \mathbf{R}$, continuous in y for any $x \in \mathbf{R}$;

Prove that f is continuous.

[^0]: *Department of Mathematics, the UST, HK.

