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Theorem 1 (Inverse Function Theorem). Let F : Rn → Rn be a C1 function such that at some a ∈ Rn

we have detDF (a) ∕= 0, then there exists an open set U containing a such that 󰁨F := F
󰀏󰀏
U

: U → F (U) is

bijective with a C1 inverse 󰁨F−1.

Definition 2 (norm of a matrix). Let A be an n× n matrix of real numbers with (i, j)-th entry aij . Then
we define the L2-norm of A by:

󰀂A󰀂 :=

󰁶 󰁛

1≤i,j≤n

a2ij .

Exercise 3. Show that the vector space of n × n real matrices, denoted by Mn×n(R) equipped with the
above 󰀂·󰀂 is a normed vector space.

Lemma 4. For any n× n real matrix A and vector x ∈ Rn, we have

󰀂Ax󰀂 ≤ 󰀂A󰀂 󰀂x󰀂 .
Here 󰀂Ax󰀂 and 󰀂x󰀂 are the L2-norm for vectors in Rn, and 󰀂A󰀂 is the L2-norm of matrices.

Proof. Let aij be the (i, j)-th entry of A, x = (x1, · · · , xn), and {ei}ni=1 be the standard basis of Rn. Then,
we have

Ax =

n󰁛

i=1

󰀳

󰁃
n󰁛

j=1

aijxj

󰀴

󰁄 ei,

hence

󰀂Ax󰀂 =

󰁹󰁸󰁸󰁸󰁷
n󰁛

i=1

󰀳

󰁃
n󰁛

j=1

aijxj

󰀴

󰁄
2

≤

󰁹󰁸󰁸󰁸󰁷
n󰁛

i=1

󰀳

󰁃
n󰁛

j=1

a2ij

󰀴

󰁄

󰀳

󰁃
n󰁛

j=1

x2
j

󰀴

󰁄

=

󰁹󰁸󰁸󰁷
n󰁛

i,j=1

a2ij

󰁹󰁸󰁸󰁷
n󰁛

j=1

x2
j = 󰀂A󰀂 󰀂x󰀂 .

□
Lemma 5. Let G : Ω ⊂ Rn → Rm be a differentiable function on a convex open set Ω in Rn. Then, for any
x, y ∈ Ω, we have

󰀂G(x)−G(y)󰀂 ≤
√
mn sup

z∈Ω
󰀂DG(z)󰀂∞ · 󰀂x− y󰀂 ,

where 󰀂DG(z)󰀂∞ := maxi,j

󰀏󰀏󰀏∂gj∂xi
(z)

󰀏󰀏󰀏

Proof. Consider the straight path γ(t) = (1 − t)x + ty which connects x and y. The path is contained in
Ω by convexity. Write G(x) = (g1(x), · · · , gm(x)), x = (x1, · · · , xn), and y = (y1, · · · , yn), then by the
single-variable mean-value theorem, we have for each j:

|gj(x)− gj(y)| = |gj ◦ γ(0)− gj ◦ γ(1)| =
󰀏󰀏󰀏󰀏
d(gj ◦ γ)

dt
(s)

󰀏󰀏󰀏󰀏 |1− 0|
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for some s ∈ (0, 1). The chain rule applied to gj ◦ γ shows

d(gj ◦ γ)
dt

=

n󰁛

i=1

∂gj
∂xi

d((1− t)xi + tyi)

dt
=

n󰁛

i=1

∂gj
∂xi

· (yi − xi).

By Cauchy-Schwarz, we have

󰀏󰀏󰀏󰀏
d(gj ◦ γ)

dt
(s)

󰀏󰀏󰀏󰀏 ≤

󰁹󰁸󰁸󰁷
n󰁛

i=1

󰀏󰀏󰀏󰀏
∂gj
∂xi

(γ(s))

󰀏󰀏󰀏󰀏
2
󰁹󰁸󰁸󰁷

n󰁛

i=1

|yi − xi|2 ≤
√
n 󰀂DG(γ(s))󰀂∞ 󰀂x− y󰀂 .

This proves for each j, we have

|gj(x)− gj(y)| ≤
√
n 󰀂DG(γ(s))󰀂∞ 󰀂x− y󰀂 ≤

√
n sup

z∈Ω
󰀂DG(z)󰀂∞ 󰀂x− y󰀂 ,

which implies

󰀂G(x)−G(y)󰀂 =

󰁹󰁸󰁸󰁷
m󰁛

j=1

|gj(x)− gj(y)|2 ≤
√
mn sup

z∈Ω
󰀂DG(z)󰀂∞ 󰀂x− y󰀂 .

□

Proof of Inverse Function Theorem. Given that DF (a) is invertible, we will pick ε, δ sufficiently small such
that any y ∈ Bε(F (a)) has a unique x ∈ Bδ(a) so that F (x) = y. In order to show this, we consider for each
y ∈ Bε(F (a)) the following map:

Ty(x) := x−DF (a)−1(y − F (x)).

We will show that by choosing ε and δ sufficiently small, such a map Ty is a contraction map from Bδ(a) to
itself. Then by Banach’s Contraction Mapping Theorem, such Ty has a unique fixed point x̄(y) ∈ Bδ(a), i.e.
Ty(x̄(y)) = x̄(y). One can easily check that it implies y = F (x̄(y)) as desired.

To verify that Ty is a contraction, we consider

󰀂Ty(x1)− Ty(x2)󰀂 =
󰀐󰀐x1 −DF (a)−1F (x1)− x2 +DF (a)−1F (x2)

󰀐󰀐

=
󰀐󰀐DF (a)−1 (DF (a)x1 − F (x1))− (DF (a)x2 − F (x2))

󰀐󰀐

≤
󰀐󰀐DF (a)−1

󰀐󰀐 󰀂G(x1)−G(x2)󰀂
where G(x) := DF (a)x − F (x). Note that DG(x) = DF (a)I − DF (x) = DF (a) − DF (x). Suppose
x1, x2 ∈ Bδ(a), then by Lemma 5, we have

󰀂G(x1)−G(x2)󰀂 ≤ n sup
z∈Bδ(a)

󰀂DG(z)󰀂∞ 󰀂x1 − x2󰀂 = n sup
z∈Bδ(a)

󰀂DF (a)−DF (z)󰀂∞ 󰀂x1 − x2󰀂 .

Since F is C1, each entry of DF (z) approaches to the corresponding entry of DF (a) as z → a. Hence, one
can choose δ > 0 small so that

󰀂DF (a)−DF (z)󰀂∞ ≤ 1

2n 󰀂DF (a)−1󰀂
whenever z ∈ Bδ(a), and consequently, we have

(0.1) 󰀂Ty(x1)− Ty(x2)󰀂 ≤
󰀐󰀐DF (a)−1

󰀐󰀐 󰀂G(x1)−G(x2)󰀂 ≤ 1

2
󰀂x1 − x2󰀂 .

This proves Ty : Bδ(a) → Rn is a contraction map.

In order to use the Banach’s Contraction Mapping Theorem, we also need to show Ty maps Bδ/2(a) to
itself. For that we need y being sufficiently close to F (a): first consider

󰀂Ty(x)− a󰀂 ≤ 󰀂Ty(x)− Ty(a)󰀂+ 󰀂Ty(a)− a󰀂

≤ 1

2
󰀂x− a󰀂+

󰀐󰀐DF (a)−1(y − F (a))
󰀐󰀐

≤ δ

4
+
󰀐󰀐DF (a)−1

󰀐󰀐 󰀂y − F (a)󰀂 .
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Let ε < δ
4󰀂DF (a)−1󰀂 , then when y ∈ Bε(F (a)), we have

󰀂Ty(x)− a󰀂 ≤ δ

4
+

δ

4
=

δ

2
.

In other words, we have Ty(x) ∈ Bδ/2(a).

Now by the Banach’s Contraction Mapping Theorem applied to Ty : Bδ/2(a) → Bδ/2(a) where y ∈
Bε(F (a)), there exists a unique fixed point x̄ ∈ Bδ/2(a) such that Ty(x̄) = x̄, or equivalently, y = F (x̄). To

summarize, we have proved that by taking U = F−1(Bε(F (a))) ∩Bδ/2(a), then

󰁨F := F
󰀏󰀏
U
: U ⊂ Bδ/2(a) → F (U) ⊂ Bε(F (a))

is bijective, and one can define an inverse 󰁨F−1 : F (U) → U .

Next we show that 󰁨F−1 is continuous on U . By (0.1), we know for any x1, x2 ∈ U , we have

1

2
󰀂x1 − x2󰀂 ≥

󰀐󰀐(x1 −DF (a)−1(y − F (x1)))− (x2 −DF (a)−1(y − F (x2)))
󰀐󰀐

=
󰀐󰀐(x1 − x2) +DF (a)−1(F (x1)− F (x2))

󰀐󰀐

≥ 󰀂x1 − x2󰀂 −
󰀐󰀐DF (a)−1

󰀐󰀐 󰀂F (x1)− F (x2)󰀂 .
This shows

󰀂x1 − x2󰀂 ≤ 2
󰀐󰀐DF (a)−1

󰀐󰀐 󰀂F (x1)− F (x2)󰀂
for any x1, x2 ∈ u. By writing xi = 󰁨F−1(yi), we have

󰀐󰀐󰀐 󰁨F−1(y1)− 󰁨F−1(y2)
󰀐󰀐󰀐 ≤ 2

󰀐󰀐DF (a)−1
󰀐󰀐 󰀂y1 − y2󰀂

for any y1, y2 ∈ F (U). In other words, 󰁨F−1 is continuous on F (U).

Next we verify that 󰁨F−1 is differentiable with Jacobian matrix given by (DF )−1. Consider y0 = F (x0) ∈
F (U), and by bijectivity of 󰁨F we have write every y ∈ F (U) as F (x). Then one can check that as y → y0
(by continuity we have x → x0 too), we have:

󰀐󰀐󰀐 󰁨F−1(y)− 󰁨F−1(y0)−DF (x0)
−1(y − y0)

󰀐󰀐󰀐

=
󰀐󰀐󰀐 󰁨F−1(F (x))− 󰁨F−1(F (x0))−DF (x0)

−1(F (x)− F (x0))
󰀐󰀐󰀐

≤
󰀐󰀐x− x0 −DF (x0)

−1(DF (x0)(x− x0) + o
󰀃
󰀂x− x0󰀂

󰀄󰀐󰀐

=
󰀐󰀐DF (x0)

−1o
󰀃
󰀂x− x0󰀂

󰀄󰀐󰀐 ≤ o
󰀃
󰀂x− x0󰀂

󰀄
.

Hence 󰁨F−1 is differentiable at any y0 ∈ F (U) where D( 󰁨F−1)(y0) = (DF (x0))
−1.

The fact that 󰁨F−1 is C1 follows directly from the fact that its partial derivatives are entries of (DF (x0))
−1.

By Crammer’s rule, each entry of (DF (x0))
−1 is a rational function of partial derivatives of F with

det(DF (x0)) as the denominator. Since F is C1, each entry of (DF (x0))
−1 is C1 too. It completes the

proof. □

Remark 6. It is easy to see by induction that if F is Ck, then its local inverse 󰁨F−1 is also Ck.
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