INVERSE FUNCTION THEOREM

FREDERICK TSZ-HO FONG

Theorem 1 (Inverse Function Theorem). Let F' : R™ — R™ be a C' function such that at some a € R"
we have det DF(a) # 0, then there exists an open set U containing a such that F := F|U U — F(U) is

bijective with a C* inverse FL.

Definition 2 (norm of a matrix). Let A be an n X n matrix of real numbers with (¢, j)-th entry a;;. Then

we define the Lo-norm of A by:
A=Y a
1<i,j<n

Exercise 3. Show that the vector space of n x n real matrices, denoted by M, x,(R) equipped with the
above ||-|| is a normed vector space.

Lemma 4. For any n X n real matrix A and vector x € R™, we have
[ Az < [|A[ ] -
Here ||Az|| and ||z|| are the La-norm for vectors in R™, and || Al is the Lao-norm of matrices.

Proof. Let a;; be the (i, j)-th entry of A, z = (x1,--- ,x,), and {e;}}_; be the standard basis of R™. Then,

we have
n n
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i=1 \j=1
hence
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Lemma 5. Let G : Q C R™ — R™ be a differentiable function on a convex open set 0 in R™. Then, for any
x,y € Q, we have

[G(z) = Gyl < Wﬁgg [DG(2) o -z —yll

9g;
20 2)
Proof. Consider the straight path v(t) = (1 — t)x + ty which connects z and y. The path is contained in

Q by convexity. Write G(z) = (g1(x), -+ ,gm(x)), x = (1, - ,xy,), and y = (y1, -+ ,Yn), then by the
single-variable mean-value theorem, we have for each j:
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where ||[DG(2)]|,, 1= max; ;

dt
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for some s € (0,1). The chain rule applied to g; oy shows

d(gj07) _ N~ 9g; d((1 — mz +ty) 095
dt P 81:1' 8172

i_xz-

By Cauchy-Schwarz, we have

o] < (323

=1

2
3 (3(5)

Y lyi = zil* < V| DG((s))ll llz =yl
i=1

This proves for each j, we have
95 () = ;)| < VnIDG(v(s))ll [l = yll < \/581618 [DG(2)l oo Iz =yl
z

which implies

1G(z) = Gyl = Zlgj(w)*gj(y)IQS mniggllDG(Z)Hoon*yH-

]

Proof of Inverse Function Theorem. Given that DF(a) is invertible, we will pick ¢, sufficiently small such
that any y € B.(F(a)) has a unique = € Bs(a) so that F'(r) = y. In order to show this, we consider for each
y € B:(F(a)) the following map:

Ty(x) == — DF(a)"'(y — F()).
We will show that by choosing € and ¢ sufficiently small, such a map 7T}, is a contraction map from B5( ) to
itself. Then by Banach’s Contraction Mapping Theorem, such T}, has a unique fixed point Z(y) € Bs(a), i

T, (Z(y)) = Z(y). One can easily check that it implies y = F(:f(y)) as desired.
To verify that T}, is a contraction, we consider

Ty (1) = Ty(z2)|| = |21 — DF(a)" F(x1) — 22 + DF(a) " F(a2) |
= ||DF(a)~! (DF(a)z1 — F(z1)) — (DF(a)zy — F(x2))||
< HDF(G)AH G (1) — G(z2)]]

where G(x) := DF(a)z — F(z). Note that DG(z) = DF(a)l — DF(z) = DF(a) — DF(x). Suppose
21,9 € Bs(a), then by Lemma 5, we have

[G(z1) = G(z2)| <n sup |[[DG(2)| |1 — a2l =n sup |[DF(a) = DF(2)|| 21 — 22|
zE€Bs(a) zE€Bs(a)

Since F' is C!, each entry of DF(z) approaches to the corresponding entry of DF(a) as z — a. Hence, one
can choose ¢ > 0 small so that
1

|DF(a) — DF(Z)HOO < W

whenever z € Bs(a), and consequently, we have
_ 1
0.) 1T, (1) — Ty @) < [|DF(@) ][ 1G(@1) = Ga)| < 5 s — o]

This proves Ty : Bs(a) — R™ is a contraction map.
In order to use the Banach’s Contraction Mapping Theorem, we also need to show T}, maps Bs/s(a) to
itself. For that we need y being sufficiently close to F(a): first consider

1Ty (x) = all < ||Ty(2) = Ty(a)|| + 1Ty (a) — all

Ll all + [ DF(@) 7 (5~ Pl
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2 DF@ |y~ F(a)l.
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Let € < then when y € B.(F(a)), we have

___ 46
4|DF(a)= ]

In other words, we have T}, (z) € Bs/(a).

Now by the Banach’s Contraction Mapping Theorem applied to T, : Bs/s(a) — Bjsja(a) where y €
B.(F(a)), there exists a unique fixed point T € Bs/s(a) such that T, (T) = Z, or equivalently, y = F(z). To
summarize, we have proved that by taking U = F~!(B.(F(a))) N Bs/2(a), then

F:=F|,:U C Bs3(a) = F(U) C B-(F(a))
is bijective, and one can define an inverse F~1:F(U)—U.
Next we show that F'~! is continuous on U. By (0.1), we know for any x1,xs € U, we have
% lz1 = 22|l 2 [[(z1 = DF(a) ™ (y = F(21))) = (v2 = DF(a) ™" (y — F(2)))]|
= ||(z1 — x2) + DF(a)"" (F(z1) — F(22))||
> [la1 = @2l = [[DF (@) 7Y | F(21) = F(z2)]-

This shows
1 — @l < 2{|DF(a)~ || | F(21) = F(a2)]|

for any x1,zs € u. By writing #; = F~1(y;), we have
[P0 = F (w2)|| < 2| DF(@) |l — el

for any 1,42 € F(U). In other words, F~! is continuous on F(U).

Next we verify that ! is differentiable with Jacobian matrix given by (DF)~!. Consider yo = F(zq) €
F(U), and by bijectivity of F we have write every y € F(U) as F(z). Then one can check that as y — yo
(by continuity we have x — ¢ too), we have:

[P ) = F~(y0) = DF (o)™ (y — )|

= | PP @) — B (F(wo)) = DF(a0) " (F(&) = F(ao))|
< Hx — 20 — DF(20) " (DF (z0)(z — 20) + o( ||z — 20| ) H
= ||[DF(x0) " o([lz — 2ol ) || < o([lz — wol|)-

Hence F~1 is differentiable at any yo € F(U) where D(F~1)(yo) = (DF(z0)) L.

The fact that F~! is C'* follows directly from the fact that its partial derivatives are entries of (DF(zq))~".
By Crammer’s rule, each entry of (DF(x))~! is a rational function of partial derivatives of F with
det(DF(xg)) as the denominator. Since F is C!, each entry of (DF(z))~! is C! too. It completes the
proof. O

Remark 6. It is easy to see by induction that if F'is C*, then its local inverse F~1is also C*.



