INVERSE FUNCTION THEOREM

FREDERICK TSZ-HO FONG

Theorem 1 (Inverse Function Theorem). Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function such that at some $a \in \mathbb{R}^{n}$ we have $\operatorname{det} D F(a) \neq 0$, then there exists an open set U containing a such that $\widetilde{F}:=\left.F\right|_{U}: U \rightarrow F(U)$ is bijective with a C^{1} inverse \widetilde{F}^{-1}.
Definition 2 (norm of a matrix). Let A be an $n \times n$ matrix of real numbers with (i, j)-th entry $a_{i j}$. Then we define the L_{2}-norm of A by:

$$
\|A\|:=\sqrt{\sum_{1 \leq i, j \leq n} a_{i j}^{2}}
$$

Exercise 3. Show that the vector space of $n \times n$ real matrices, denoted by $M_{n \times n}(\mathbb{R})$ equipped with the above $\|\cdot\|$ is a normed vector space.
Lemma 4. For any $n \times n$ real matrix A and vector $x \in \mathbb{R}^{n}$, we have

$$
\|A x\| \leq\|A\|\|x\| .
$$

Here $\|A x\|$ and $\|x\|$ are the L_{2}-norm for vectors in \mathbb{R}^{n}, and $\|A\|$ is the L_{2}-norm of matrices.
Proof. Let $a_{i j}$ be the (i, j)-th entry of $A, x=\left(x_{1}, \cdots, x_{n}\right)$, and $\left\{e_{i}\right\}_{i=1}^{n}$ be the standard basis of \mathbb{R}^{n}. Then, we have

$$
A x=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) e_{i}
$$

hence

$$
\begin{aligned}
\|A x\| & =\sqrt{\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2}} \\
& \leq \sqrt{\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j}^{2}\right)\left(\sum_{j=1}^{n} x_{j}^{2}\right)} \\
& =\sqrt{\sum_{i, j=1}^{n} a_{i j}^{2}} \sqrt{\sum_{j=1}^{n} x_{j}^{2}}=\|A\|\|x\| .
\end{aligned}
$$

Lemma 5. Let $G: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a differentiable function on a convex open set Ω in \mathbb{R}^{n}. Then, for any $x, y \in \Omega$, we have

$$
\|G(x)-G(y)\| \leq \sqrt{m n} \sup _{z \in \Omega}\|D G(z)\|_{\infty} \cdot\|x-y\|
$$

where $\|D G(z)\|_{\infty}:=\max _{i, j}\left|\frac{\partial g_{j}}{\partial x_{i}}(z)\right|$
Proof. Consider the straight path $\gamma(t)=(1-t) x+t y$ which connects x and y. The path is contained in Ω by convexity. Write $G(x)=\left(g_{1}(x), \cdots, g_{m}(x)\right), x=\left(x_{1}, \cdots, x_{n}\right)$, and $y=\left(y_{1}, \cdots, y_{n}\right)$, then by the single-variable mean-value theorem, we have for each j :

$$
\left|g_{j}(x)-g_{j}(y)\right|=\left|g_{j} \circ \gamma(0)-g_{j} \circ \gamma(1)\right|=\left|\frac{d\left(g_{j} \circ \gamma\right)}{d t}(s)\right||1-0|
$$

for some $s \in(0,1)$. The chain rule applied to $g_{j} \circ \gamma$ shows

$$
\frac{d\left(g_{j} \circ \gamma\right)}{d t}=\sum_{i=1}^{n} \frac{\partial g_{j}}{\partial x_{i}} \frac{d\left((1-t) x_{i}+t y_{i}\right)}{d t}=\sum_{i=1}^{n} \frac{\partial g_{j}}{\partial x_{i}} \cdot\left(y_{i}-x_{i}\right)
$$

By Cauchy-Schwarz, we have

$$
\left|\frac{d\left(g_{j} \circ \gamma\right)}{d t}(s)\right| \leq \sqrt{\sum_{i=1}^{n}\left|\frac{\partial g_{j}}{\partial x_{i}}(\gamma(s))\right|^{2}} \sqrt{\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|^{2}} \leq \sqrt{n}\|D G(\gamma(s))\|_{\infty}\|x-y\|
$$

This proves for each j, we have

$$
\left|g_{j}(x)-g_{j}(y)\right| \leq \sqrt{n}\|D G(\gamma(s))\|_{\infty}\|x-y\| \leq \sqrt{n} \sup _{z \in \Omega}\|D G(z)\|_{\infty}\|x-y\|
$$

which implies

$$
\|G(x)-G(y)\|=\sqrt{\sum_{j=1}^{m}\left|g_{j}(x)-g_{j}(y)\right|^{2}} \leq \sqrt{m n} \sup _{z \in \Omega}\|D G(z)\|_{\infty}\|x-y\|
$$

Proof of Inverse Function Theorem. Given that $\operatorname{DF}(a)$ is invertible, we will pick ε, δ sufficiently small such that any $y \in B_{\varepsilon}(F(a))$ has a unique $x \in B_{\delta}(a)$ so that $F(x)=y$. In order to show this, we consider for each $y \in B_{\varepsilon}(F(a))$ the following map:

$$
T_{y}(x):=x-D F(a)^{-1}(y-F(x))
$$

We will show that by choosing ε and δ sufficiently small, such a map T_{y} is a contraction map from $\overline{B_{\delta}(a)}$ to itself. Then by Banach's Contraction Mapping Theorem, such T_{y} has a unique fixed point $\bar{x}(y) \in B_{\delta}(a)$, i.e. $T_{y}(\bar{x}(y))=\bar{x}(y)$. One can easily check that it implies $y=F(\bar{x}(y))$ as desired.

To verify that T_{y} is a contraction, we consider

$$
\begin{aligned}
\left\|T_{y}\left(x_{1}\right)-T_{y}\left(x_{2}\right)\right\| & =\left\|x_{1}-D F(a)^{-1} F\left(x_{1}\right)-x_{2}+D F(a)^{-1} F\left(x_{2}\right)\right\| \\
& =\left\|D F(a)^{-1}\left(D F(a) x_{1}-F\left(x_{1}\right)\right)-\left(D F(a) x_{2}-F\left(x_{2}\right)\right)\right\| \\
& \leq\left\|D F(a)^{-1}\right\|\left\|G\left(x_{1}\right)-G\left(x_{2}\right)\right\|
\end{aligned}
$$

where $G(x):=D F(a) x-F(x)$. Note that $D G(x)=D F(a) I-D F(x)=D F(a)-D F(x)$. Suppose $x_{1}, x_{2} \in B_{\delta}(a)$, then by Lemma 5 , we have

$$
\left\|G\left(x_{1}\right)-G\left(x_{2}\right)\right\| \leq n \sup _{z \in B_{\delta}(a)}\|D G(z)\|_{\infty}\left\|x_{1}-x_{2}\right\|=n \sup _{z \in B_{\delta}(a)}\|D F(a)-D F(z)\|_{\infty}\left\|x_{1}-x_{2}\right\|
$$

Since F is C^{1}, each entry of $D F(z)$ approaches to the corresponding entry of $D F(a)$ as $z \rightarrow a$. Hence, one can choose $\delta>0$ small so that

$$
\|D F(a)-D F(z)\|_{\infty} \leq \frac{1}{2 n\left\|D F(a)^{-1}\right\|}
$$

whenever $z \in B_{\delta}(a)$, and consequently, we have

$$
\begin{equation*}
\left\|T_{y}\left(x_{1}\right)-T_{y}\left(x_{2}\right)\right\| \leq\left\|D F(a)^{-1}\right\|\left\|G\left(x_{1}\right)-G\left(x_{2}\right)\right\| \leq \frac{1}{2}\left\|x_{1}-x_{2}\right\| \tag{0.1}
\end{equation*}
$$

This proves $T_{y}: B_{\delta}(a) \rightarrow \mathbb{R}^{n}$ is a contraction map.
In order to use the Banach's Contraction Mapping Theorem, we also need to show T_{y} maps $\overline{B_{\delta / 2}(a)}$ to itself. For that we need y being sufficiently close to $F(a)$: first consider

$$
\begin{aligned}
\left\|T_{y}(x)-a\right\| & \leq\left\|T_{y}(x)-T_{y}(a)\right\|+\left\|T_{y}(a)-a\right\| \\
& \leq \frac{1}{2}\|x-a\|+\left\|D F(a)^{-1}(y-F(a))\right\| \\
& \leq \frac{\delta}{4}+\left\|D F(a)^{-1}\right\|\|y-F(a)\| .
\end{aligned}
$$

Let $\varepsilon<\frac{\delta}{4\left\|D F(a)^{-1}\right\|}$, then when $y \in B_{\varepsilon}(F(a))$, we have

$$
\left\|T_{y}(x)-a\right\| \leq \frac{\delta}{4}+\frac{\delta}{4}=\frac{\delta}{2} .
$$

In other words, we have $T_{y}(x) \in \overline{B_{\delta / 2}(a)}$.
Now by the Banach's Contraction Mapping Theorem applied to $T_{y}: \overline{B_{\delta / 2}(a)} \rightarrow \overline{B_{\delta / 2}(a)}$ where $y \in$ $B_{\varepsilon}(F(a))$, there exists a unique fixed point $\bar{x} \in \overline{B_{\delta / 2}(a)}$ such that $T_{y}(\bar{x})=\bar{x}$, or equivalently, $y=F(\bar{x})$. To summarize, we have proved that by taking $U=F^{-1}\left(B_{\varepsilon}(F(a))\right) \cap B_{\delta / 2}(a)$, then

$$
\widetilde{F}:=\left.F\right|_{U}: U \subset B_{\delta / 2}(a) \rightarrow F(U) \subset B_{\varepsilon}(F(a))
$$

is bijective, and one can define an inverse $\widetilde{F}^{-1}: F(U) \rightarrow U$.
Next we show that \widetilde{F}^{-1} is continuous on U. By (0.1), we know for any $x_{1}, x_{2} \in U$, we have

$$
\begin{aligned}
\frac{1}{2}\left\|x_{1}-x_{2}\right\| & \geq\left\|\left(x_{1}-D F(a)^{-1}\left(y-F\left(x_{1}\right)\right)\right)-\left(x_{2}-D F(a)^{-1}\left(y-F\left(x_{2}\right)\right)\right)\right\| \\
& =\left\|\left(x_{1}-x_{2}\right)+D F(a)^{-1}\left(F\left(x_{1}\right)-F\left(x_{2}\right)\right)\right\| \\
& \geq\left\|x_{1}-x_{2}\right\|-\left\|D F(a)^{-1}\right\|\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\|
\end{aligned}
$$

This shows

$$
\left\|x_{1}-x_{2}\right\| \leq 2\left\|D F(a)^{-1}\right\|\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\|
$$

for any $x_{1}, x_{2} \in u$. By writing $x_{i}=\widetilde{F}^{-1}\left(y_{i}\right)$, we have

$$
\left\|\widetilde{F}^{-1}\left(y_{1}\right)-\widetilde{F}^{-1}\left(y_{2}\right)\right\| \leq 2\left\|D F(a)^{-1}\right\|\left\|y_{1}-y_{2}\right\|
$$

for any $y_{1}, y_{2} \in F(U)$. In other words, \widetilde{F}^{-1} is continuous on $F(U)$.
Next we verify that \widetilde{F}^{-1} is differentiable with Jacobian matrix given by $(D F)^{-1}$. Consider $y_{0}=F\left(x_{0}\right) \in$ $F(U)$, and by bijectivity of \widetilde{F} we have write every $y \in F(U)$ as $F(x)$. Then one can check that as $y \rightarrow y_{0}$ (by continuity we have $x \rightarrow x_{0}$ too), we have:

$$
\begin{aligned}
& \left\|\widetilde{F}^{-1}(y)-\widetilde{F}^{-1}\left(y_{0}\right)-D F\left(x_{0}\right)^{-1}\left(y-y_{0}\right)\right\| \\
& =\left\|\widetilde{F}^{-1}(F(x))-\widetilde{F}^{-1}\left(F\left(x_{0}\right)\right)-D F\left(x_{0}\right)^{-1}\left(F(x)-F\left(x_{0}\right)\right)\right\| \\
& \leq \| x-x_{0}-D F\left(x_{0}\right)^{-1}\left(D F\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left\|x-x_{0}\right\|\right) \|\right. \\
& =\left\|D F\left(x_{0}\right)^{-1} o\left(\left\|x-x_{0}\right\|\right)\right\| \leq o\left(\left\|x-x_{0}\right\|\right) .
\end{aligned}
$$

Hence \widetilde{F}^{-1} is differentiable at any $y_{0} \in F(U)$ where $D\left(\widetilde{F}^{-1}\right)\left(y_{0}\right)=\left(D F\left(x_{0}\right)\right)^{-1}$.
The fact that \widetilde{F}^{-1} is C^{1} follows directly from the fact that its partial derivatives are entries of $\left(D F\left(x_{0}\right)\right)^{-1}$. By Crammer's rule, each entry of $\left(D F\left(x_{0}\right)\right)^{-1}$ is a rational function of partial derivatives of F with $\operatorname{det}\left(D F\left(x_{0}\right)\right)$ as the denominator. Since F is C^{1}, each entry of $\left(D F\left(x_{0}\right)\right)^{-1}$ is C^{1} too. It completes the proof.
Remark 6 . It is easy to see by induction that if F is C^{k}, then its local inverse \widetilde{F}^{-1} is also C^{k}.

