INVERSE FUNCTION THEOREM

FREDERICK TSZ-HO FONG

Theorem 1 (Inverse Function Theorem). Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function such that at some $a \in \mathbb{R}^n$ we have det $DF(a) \neq 0$, then there exists an open set U containing a such that $\widetilde{F} := F|_U : U \to F(U)$ is bijective with a C^1 inverse \widetilde{F}^{-1} .

Definition 2 (norm of a matrix). Let A be an $n \times n$ matrix of real numbers with (i, j)-th entry a_{ij} . Then we define the L_2 -norm of A by:

$$||A|| := \sqrt{\sum_{1 \le i,j \le n} a_{ij}^2}$$

Exercise 3. Show that the vector space of $n \times n$ real matrices, denoted by $M_{n \times n}(\mathbb{R})$ equipped with the above $\|\cdot\|$ is a normed vector space.

Lemma 4. For any $n \times n$ real matrix A and vector $x \in \mathbb{R}^n$, we have

$$||Ax|| \le ||A|| \, ||x||$$
.

Here ||Ax|| and ||x|| are the L_2 -norm for vectors in \mathbb{R}^n , and ||A|| is the L_2 -norm of matrices.

Proof. Let a_{ij} be the (i, j)-th entry of $A, x = (x_1, \dots, x_n)$, and $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{R}^n . Then, we have

$$Ax = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_j \right) e_i,$$

hence

$$||Ax|| = \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j}\right)^{2}}$$

$$\leq \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}^{2}\right) \left(\sum_{j=1}^{n} x_{j}^{2}\right)}$$

$$= \sqrt{\sum_{i,j=1}^{n} a_{ij}^{2}} \sqrt{\sum_{j=1}^{n} x_{j}^{2}} = ||A|| ||x||.$$

Lemma 5. Let $G : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function on a convex open set Ω in \mathbb{R}^n . Then, for any $x, y \in \Omega$, we have

$$\left\|G(x) - G(y)\right\| \le \sqrt{mn} \sup_{z \in \Omega} \left\|DG(z)\right\|_{\infty} \cdot \left\|x - y\right\|,$$

where $\|DG(z)\|_{\infty} := \max_{i,j} \left| \frac{\partial g_j}{\partial x_i}(z) \right|$

Proof. Consider the straight path $\gamma(t) = (1 - t)x + ty$ which connects x and y. The path is contained in Ω by convexity. Write $G(x) = (g_1(x), \dots, g_m(x)), x = (x_1, \dots, x_n)$, and $y = (y_1, \dots, y_n)$, then by the single-variable mean-value theorem, we have for each j:

$$|g_j(x) - g_j(y)| = |g_j \circ \gamma(0) - g_j \circ \gamma(1)| = \left| \frac{d(g_j \circ \gamma)}{dt}(s) \right| |1 - 0|$$

for some $s \in (0, 1)$. The chain rule applied to $g_j \circ \gamma$ shows

$$\frac{d(g_j \circ \gamma)}{dt} = \sum_{i=1}^n \frac{\partial g_j}{\partial x_i} \frac{d((1-t)x_i + ty_i)}{dt} = \sum_{i=1}^n \frac{\partial g_j}{\partial x_i} \cdot (y_i - x_i).$$

By Cauchy-Schwarz, we have

$$\left|\frac{d(g_j \circ \gamma)}{dt}(s)\right| \le \sqrt{\sum_{i=1}^n \left|\frac{\partial g_j}{\partial x_i}(\gamma(s))\right|^2} \sqrt{\sum_{i=1}^n |y_i - x_i|^2} \le \sqrt{n} \left\|DG(\gamma(s))\right\|_{\infty} \left\|x - y\right\|.$$

This proves for each j, we have

$$|g_j(x) - g_j(y)| \le \sqrt{n} \|DG(\gamma(s))\|_{\infty} \|x - y\| \le \sqrt{n} \sup_{z \in \Omega} \|DG(z)\|_{\infty} \|x - y\|,$$

which implies

$$\|G(x) - G(y)\| = \sqrt{\sum_{j=1}^{m} |g_j(x) - g_j(y)|^2} \le \sqrt{mn} \sup_{z \in \Omega} \|DG(z)\|_{\infty} \|x - y\|.$$

Proof of Inverse Function Theorem. Given that DF(a) is invertible, we will pick ε, δ sufficiently small such that any $y \in B_{\varepsilon}(F(a))$ has a unique $x \in B_{\delta}(a)$ so that F(x) = y. In order to show this, we consider for each $y \in B_{\varepsilon}(F(a))$ the following map:

$$T_y(x) := x - DF(a)^{-1}(y - F(x)).$$

We will show that by choosing ε and δ sufficiently small, such a map T_y is a contraction map from $\overline{B_{\delta}(a)}$ to itself. Then by Banach's Contraction Mapping Theorem, such T_y has a unique fixed point $\bar{x}(y) \in B_{\delta}(a)$, i.e. $T_y(\bar{x}(y)) = \bar{x}(y)$. One can easily check that it implies $y = F(\bar{x}(y))$ as desired.

To verify that T_y is a contraction, we consider

$$\begin{aligned} \|T_y(x_1) - T_y(x_2)\| &= \left\| x_1 - DF(a)^{-1}F(x_1) - x_2 + DF(a)^{-1}F(x_2) \right\| \\ &= \left\| DF(a)^{-1} \left(DF(a)x_1 - F(x_1) \right) - \left(DF(a)x_2 - F(x_2) \right) \right\| \\ &\leq \left\| DF(a)^{-1} \right\| \|G(x_1) - G(x_2)\| \end{aligned}$$

where G(x) := DF(a)x - F(x). Note that DG(x) = DF(a)I - DF(x) = DF(a) - DF(x). Suppose $x_1, x_2 \in B_{\delta}(a)$, then by Lemma 5, we have

$$\|G(x_1) - G(x_2)\| \le n \sup_{z \in B_{\delta}(a)} \|DG(z)\|_{\infty} \|x_1 - x_2\| = n \sup_{z \in B_{\delta}(a)} \|DF(a) - DF(z)\|_{\infty} \|x_1 - x_2\|.$$

Since F is C^1 , each entry of DF(z) approaches to the corresponding entry of DF(a) as $z \to a$. Hence, one can choose $\delta > 0$ small so that

$$\|DF(a) - DF(z)\|_{\infty} \le \frac{1}{2n \|DF(a)^{-1}\|}$$

whenever $z \in B_{\delta}(a)$, and consequently, we have

(0.1)
$$\|T_y(x_1) - T_y(x_2)\| \le \|DF(a)^{-1}\| \|G(x_1) - G(x_2)\| \le \frac{1}{2} \|x_1 - x_2\|.$$

This proves $T_y: B_{\delta}(a) \to \mathbb{R}^n$ is a contraction map.

In order to use the Banach's Contraction Mapping Theorem, we also need to show T_y maps $\overline{B_{\delta/2}(a)}$ to itself. For that we need y being sufficiently close to F(a): first consider

$$\begin{aligned} \|T_y(x) - a\| &\leq \|T_y(x) - T_y(a)\| + \|T_y(a) - a\| \\ &\leq \frac{1}{2} \|x - a\| + \left\| DF(a)^{-1}(y - F(a)) \right\| \\ &\leq \frac{\delta}{4} + \left\| DF(a)^{-1} \right\| \|y - F(a)\| \,. \end{aligned}$$

Let $\varepsilon < \frac{\delta}{4\|DF(a)^{-1}\|}$, then when $y \in B_{\varepsilon}(F(a))$, we have

$$||T_y(x) - a|| \le \frac{\delta}{4} + \frac{\delta}{4} = \frac{\delta}{2}$$

In other words, we have $T_y(x) \in \overline{B_{\delta/2}(a)}$.

Now by the Banach's Contraction Mapping Theorem applied to $T_y : \overline{B_{\delta/2}(a)} \to \overline{B_{\delta/2}(a)}$ where $y \in B_{\varepsilon}(F(a))$, there exists a unique fixed point $\bar{x} \in \overline{B_{\delta/2}(a)}$ such that $T_y(\bar{x}) = \bar{x}$, or equivalently, $y = F(\bar{x})$. To summarize, we have proved that by taking $U = F^{-1}(B_{\varepsilon}(F(a))) \cap B_{\delta/2}(a)$, then

$$\widetilde{F} := F\big|_U : U \subset B_{\delta/2}(a) \to F(U) \subset B_{\varepsilon}(F(a))$$

is bijective, and one can define an inverse $\widetilde{F}^{-1}: F(U) \to U$.

Next we show that \widetilde{F}^{-1} is continuous on U. By (0.1), we know for any $x_1, x_2 \in U$, we have

$$\frac{1}{2} \|x_1 - x_2\| \ge \|(x_1 - DF(a)^{-1}(y - F(x_1))) - (x_2 - DF(a)^{-1}(y - F(x_2)))\|$$

= $\|(x_1 - x_2) + DF(a)^{-1}(F(x_1) - F(x_2))\|$
 $\ge \|x_1 - x_2\| - \|DF(a)^{-1}\| \|F(x_1) - F(x_2)\|.$

This shows

$$||x_1 - x_2|| \le 2 ||DF(a)^{-1}|| ||F(x_1) - F(x_2)||$$

for any $x_1, x_2 \in u$. By writing $x_i = \widetilde{F}^{-1}(y_i)$, we have

$$\left\|\widetilde{F}^{-1}(y_1) - \widetilde{F}^{-1}(y_2)\right\| \le 2 \left\|DF(a)^{-1}\right\| \|y_1 - y_2\|$$

for any $y_1, y_2 \in F(U)$. In other words, \widetilde{F}^{-1} is continuous on F(U).

Next we verify that \widetilde{F}^{-1} is differentiable with Jacobian matrix given by $(DF)^{-1}$. Consider $y_0 = F(x_0) \in F(U)$, and by bijectivity of \widetilde{F} we have write every $y \in F(U)$ as F(x). Then one can check that as $y \to y_0$ (by continuity we have $x \to x_0$ too), we have:

$$\begin{aligned} \left\| \widetilde{F}^{-1}(y) - \widetilde{F}^{-1}(y_0) - DF(x_0)^{-1}(y - y_0) \right\| \\ &= \left\| \widetilde{F}^{-1}(F(x)) - \widetilde{F}^{-1}(F(x_0)) - DF(x_0)^{-1}(F(x) - F(x_0)) \right\| \\ &\leq \left\| x - x_0 - DF(x_0)^{-1}(DF(x_0)(x - x_0) + o(\|x - x_0\|)) \right\| \\ &= \left\| DF(x_0)^{-1}o(\|x - x_0\|) \right\| \leq o(\|x - x_0\|). \end{aligned}$$

Hence \widetilde{F}^{-1} is differentiable at any $y_0 \in F(U)$ where $D(\widetilde{F}^{-1})(y_0) = (DF(x_0))^{-1}$.

The fact that \widetilde{F}^{-1} is C^1 follows directly from the fact that its partial derivatives are entries of $(DF(x_0))^{-1}$. By Crammer's rule, each entry of $(DF(x_0))^{-1}$ is a rational function of partial derivatives of F with $\det(DF(x_0))$ as the denominator. Since F is C^1 , each entry of $(DF(x_0))^{-1}$ is C^1 too. It completes the proof.

Remark 6. It is easy to see by induction that if F is C^k , then its local inverse \widetilde{F}^{-1} is also C^k .