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Theorem 1 (Inverse Function Theorem). Let F : Rn → Rn be a C1 function such that at some a ∈ Rn

we have detDF (a) ∕= 0, then there exists an open set U containing a such that F := F

U

: U → F (U) is

bijective with a C1 inverse F−1.

Definition 2 (norm of a matrix). Let A be an n× n matrix of real numbers with (i, j)-th entry aij . Then
we define the L2-norm of A by:

A :=

 

1≤i,j≤n

a2ij .

Exercise 3. Show that the vector space of n × n real matrices, denoted by Mn×n(R) equipped with the
above · is a normed vector space.

Lemma 4. For any n× n real matrix A and vector x ∈ Rn, we have

Ax ≤ A x .
Here Ax and x are the L2-norm for vectors in Rn, and A is the L2-norm of matrices.

Proof. Let aij be the (i, j)-th entry of A, x = (x1, · · · , xn), and {ei}ni=1 be the standard basis of Rn. Then,
we have

Ax =

n

i=1




n

j=1

aijxj



 ei,

hence

Ax =


n

i=1




n

j=1

aijxj




2

≤


n

i=1




n

j=1

a2ij








n

j=1

x2
j





=


n

i,j=1

a2ij


n

j=1

x2
j = A x .

□
Lemma 5. Let G : Ω ⊂ Rn → Rm be a differentiable function on a convex open set Ω in Rn. Then, for any
x, y ∈ Ω, we have

G(x)−G(y) ≤
√
mn sup

z∈Ω
DG(z)∞ · x− y ,

where DG(z)∞ := maxi,j

∂gj∂xi
(z)



Proof. Consider the straight path γ(t) = (1 − t)x + ty which connects x and y. The path is contained in
Ω by convexity. Write G(x) = (g1(x), · · · , gm(x)), x = (x1, · · · , xn), and y = (y1, · · · , yn), then by the
single-variable mean-value theorem, we have for each j:

|gj(x)− gj(y)| = |gj ◦ γ(0)− gj ◦ γ(1)| =

d(gj ◦ γ)

dt
(s)

 |1− 0|

1



for some s ∈ (0, 1). The chain rule applied to gj ◦ γ shows

d(gj ◦ γ)
dt

=

n

i=1

∂gj
∂xi

d((1− t)xi + tyi)

dt
=

n

i=1

∂gj
∂xi

· (yi − xi).

By Cauchy-Schwarz, we have


d(gj ◦ γ)

dt
(s)

 ≤


n

i=1


∂gj
∂xi

(γ(s))


2


n

i=1

|yi − xi|2 ≤
√
n DG(γ(s))∞ x− y .

This proves for each j, we have

|gj(x)− gj(y)| ≤
√
n DG(γ(s))∞ x− y ≤

√
n sup

z∈Ω
DG(z)∞ x− y ,

which implies

G(x)−G(y) =


m

j=1

|gj(x)− gj(y)|2 ≤
√
mn sup

z∈Ω
DG(z)∞ x− y .

□

Proof of Inverse Function Theorem. Given that DF (a) is invertible, we will pick ε, δ sufficiently small such
that any y ∈ Bε(F (a)) has a unique x ∈ Bδ(a) so that F (x) = y. In order to show this, we consider for each
y ∈ Bε(F (a)) the following map:

Ty(x) := x−DF (a)−1(y − F (x)).

We will show that by choosing ε and δ sufficiently small, such a map Ty is a contraction map from Bδ(a) to
itself. Then by Banach’s Contraction Mapping Theorem, such Ty has a unique fixed point x̄(y) ∈ Bδ(a), i.e.
Ty(x̄(y)) = x̄(y). One can easily check that it implies y = F (x̄(y)) as desired.

To verify that Ty is a contraction, we consider

Ty(x1)− Ty(x2) =
x1 −DF (a)−1F (x1)− x2 +DF (a)−1F (x2)



=
DF (a)−1 (DF (a)x1 − F (x1))− (DF (a)x2 − F (x2))



≤
DF (a)−1

 G(x1)−G(x2)
where G(x) := DF (a)x − F (x). Note that DG(x) = DF (a)I − DF (x) = DF (a) − DF (x). Suppose
x1, x2 ∈ Bδ(a), then by Lemma 5, we have

G(x1)−G(x2) ≤ n sup
z∈Bδ(a)

DG(z)∞ x1 − x2 = n sup
z∈Bδ(a)

DF (a)−DF (z)∞ x1 − x2 .

Since F is C1, each entry of DF (z) approaches to the corresponding entry of DF (a) as z → a. Hence, one
can choose δ > 0 small so that

DF (a)−DF (z)∞ ≤ 1

2n DF (a)−1
whenever z ∈ Bδ(a), and consequently, we have

(0.1) Ty(x1)− Ty(x2) ≤
DF (a)−1

 G(x1)−G(x2) ≤ 1

2
x1 − x2 .

This proves Ty : Bδ(a) → Rn is a contraction map.

In order to use the Banach’s Contraction Mapping Theorem, we also need to show Ty maps Bδ/2(a) to
itself. For that we need y being sufficiently close to F (a): first consider

Ty(x)− a ≤ Ty(x)− Ty(a)+ Ty(a)− a

≤ 1

2
x− a+

DF (a)−1(y − F (a))


≤ δ

4
+
DF (a)−1

 y − F (a) .
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Let ε < δ
4DF (a)−1 , then when y ∈ Bε(F (a)), we have

Ty(x)− a ≤ δ

4
+

δ

4
=

δ

2
.

In other words, we have Ty(x) ∈ Bδ/2(a).

Now by the Banach’s Contraction Mapping Theorem applied to Ty : Bδ/2(a) → Bδ/2(a) where y ∈
Bε(F (a)), there exists a unique fixed point x̄ ∈ Bδ/2(a) such that Ty(x̄) = x̄, or equivalently, y = F (x̄). To

summarize, we have proved that by taking U = F−1(Bε(F (a))) ∩Bδ/2(a), then

F := F

U
: U ⊂ Bδ/2(a) → F (U) ⊂ Bε(F (a))

is bijective, and one can define an inverse F−1 : F (U) → U .

Next we show that F−1 is continuous on U . By (0.1), we know for any x1, x2 ∈ U , we have

1

2
x1 − x2 ≥

(x1 −DF (a)−1(y − F (x1)))− (x2 −DF (a)−1(y − F (x2)))


=
(x1 − x2) +DF (a)−1(F (x1)− F (x2))



≥ x1 − x2 −
DF (a)−1

 F (x1)− F (x2) .
This shows

x1 − x2 ≤ 2
DF (a)−1

 F (x1)− F (x2)
for any x1, x2 ∈ u. By writing xi = F−1(yi), we have

 F−1(y1)− F−1(y2)
 ≤ 2

DF (a)−1
 y1 − y2

for any y1, y2 ∈ F (U). In other words, F−1 is continuous on F (U).

Next we verify that F−1 is differentiable with Jacobian matrix given by (DF )−1. Consider y0 = F (x0) ∈
F (U), and by bijectivity of F we have write every y ∈ F (U) as F (x). Then one can check that as y → y0
(by continuity we have x → x0 too), we have:

 F−1(y)− F−1(y0)−DF (x0)
−1(y − y0)



=
 F−1(F (x))− F−1(F (x0))−DF (x0)

−1(F (x)− F (x0))


≤
x− x0 −DF (x0)

−1(DF (x0)(x− x0) + o

x− x0



=
DF (x0)

−1o

x− x0

 ≤ o

x− x0


.

Hence F−1 is differentiable at any y0 ∈ F (U) where D( F−1)(y0) = (DF (x0))
−1.

The fact that F−1 is C1 follows directly from the fact that its partial derivatives are entries of (DF (x0))
−1.

By Crammer’s rule, each entry of (DF (x0))
−1 is a rational function of partial derivatives of F with

det(DF (x0)) as the denominator. Since F is C1, each entry of (DF (x0))
−1 is C1 too. It completes the

proof. □

Remark 6. It is easy to see by induction that if F is Ck, then its local inverse F−1 is also Ck.
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