## MATH 4033 • Spring 2017 • Calculus on Manifolds Problem Set #5 • de Rham Cohomology • Due Date: 08/05/2017, 10:20AM

Instruction: Turn in Problems #1 - #3. You are recommended to do Problems #4 - #5 before the final exam. If you wish, try Problem #6 after the final exam.

1. The purpose of this exercise is to prove that  $H^2(\mathbb{R}^3) = 0$ , i.e. every closed 2-form on  $\mathbb{R}^3$  must be exact. Consider a closed form:

$$\omega = A \, dy \wedge dz + B \, dz \wedge dx + C \, dx \wedge dy$$

where *A*, *B* and *C* are smooth scalar functions of (x, y, z). Define the following 1-form:

$$\begin{aligned} \alpha &:= \left(\int_0^1 A(tx, ty, tz)t \, dt\right) (y \, dz - z \, dy) \\ &+ \left(\int_0^1 B(tx, ty, tz)t \, dt\right) (z \, dx - x \, dz) \\ &+ \left(\int_0^1 C(tx, ty, tz)t \, dt\right) (x \, dy - y \, dx) \end{aligned}$$

First, compute  $d\alpha$ ; then use the result to show that  $\omega$  is exact.

**Solution:**  $\omega$  is closed implies

$$\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z} = 0.$$

Next, we have

$$\alpha = \left(\int_0^1 A(tx, ty, tz)t \, dt\right)(y \, dz - z \, dy)$$
  
+  $\left(\int_0^1 B(tx, ty, tz)t \, dt\right)(z \, dx - x \, dz)$   
+  $\left(\int_0^1 C(tx, ty, tz)t \, dt\right)(x \, dy - y \, dx)$   
=  $\left(\int_0^1 B(tx, ty, tz)tz - C(tx, ty, tz)ty \, dt\right)dx$   
+  $\left(\int_0^1 C(tx, ty, tz)tx - A(tx, ty, tz)tz \, dt\right)dy$   
+  $\left(\int_0^1 A(tx, ty, tz)ty - B(tx, ty, tz)tx \, dt\right)dz$ 

$$d\alpha = \left(\int_{0}^{1} t \frac{\partial}{\partial y} \left(B(tx, ty, tz)z - C(tx, ty, tz)y\right) dt\right) dy \wedge dx$$
  
+  $\left(\int_{0}^{1} t \frac{\partial}{\partial z} \left(B(tx, ty, tz)z - C(tx, ty, tz)y\right) dt\right) dz \wedge dx$   
+  $\left(\int_{0}^{1} t \frac{\partial}{\partial x} \left(C(tx, ty, tz)x - A(tx, ty, tz)z\right) dt\right) dx \wedge dy$   
+  $\left(\int_{0}^{1} t \frac{\partial}{\partial z} \left(C(tx, ty, tz)x - A(tx, ty, tz)z\right) dt\right) dz \wedge dy$   
+  $\left(\int_{0}^{1} t \frac{\partial}{\partial y} \left(A(tx, ty, tz)y - B(tx, ty, tz)x\right) dt\right) dy \wedge dz$   
+  $\left(\int_{0}^{1} t \frac{\partial}{\partial x} \left(A(tx, ty, tz)y - B(tx, ty, tz)x\right) dt\right) dx \wedge dz.$ 

From now on, just for simplicity, we abbreviate A(tx, ty, tz) by just A. Similarly for B and C. Continuation on our computation using the chain rule, we get:

$$\begin{split} &= \left(\int_{0}^{1} t^{2} \left(x \frac{\partial C}{\partial x} + y \frac{\partial C}{\partial y} + z \frac{\partial C}{\partial z}\right) - t^{2} z \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}\right) + 2t C(tx, ty, tz) dt\right) dx \wedge dy \\ &+ \left(\int_{0}^{1} t^{2} \left(x \frac{\partial A}{\partial x} + y \frac{\partial A}{\partial y} + z \frac{\partial A}{\partial z}\right) - t^{2} x \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}\right) + 2t A(tx, ty, tz) dt\right) dy \wedge dz \\ &+ \left(\int_{0}^{1} t^{2} \left(x \frac{\partial B}{\partial x} + y \frac{\partial B}{\partial y} + y \frac{\partial B}{\partial z}\right) - t^{2} y \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}\right) + 2t B(tx, ty, tz) dt\right) dz \wedge dx \\ &= \left(\int_{0}^{1} t^{2} \left(x \frac{\partial C}{\partial x} + y \frac{\partial C}{\partial y} + z \frac{\partial C}{\partial z}\right) + 2t C(tx, ty, tz) dt\right) dx \wedge dy \\ &+ \left(\int_{0}^{1} t^{2} \left(x \frac{\partial A}{\partial x} + y \frac{\partial A}{\partial y} + x \frac{\partial A}{\partial z}\right) + 2t A(tx, ty, tz) dt\right) dy \wedge dz \\ &+ \left(\int_{0}^{1} t^{2} \left(x \frac{\partial A}{\partial x} + y \frac{\partial A}{\partial y} + x \frac{\partial A}{\partial z}\right) + 2t B(tx, ty, tz) dt\right) dz \wedge dx \\ &= \left(\int_{0}^{1} \frac{d}{dt} (C(tx, ty, tz)t^{2}) dt\right) dx \wedge dy \\ &+ \left(\int_{0}^{1} \frac{d}{dt} (A(tx, ty, tz)t^{2}) dt\right) dx \wedge dy \\ &+ \left(\int_{0}^{1} \frac{d}{dt} (B(tx, ty, tz)t^{2}) dt\right) dz \wedge dx \\ &= A dy \wedge dz + B dz \wedge dx + C dx \wedge dy \\ &= \omega. \end{split}$$

Page 2

2. Consider the following alphabet. Each letter is regarded as a solid region.



Answer the following without justification:

(a) Which letter(s) is/are contractible?

**Solution:** C, E, F, G, H, I, J, K, L, M,N, S, T, U, V, W, X, Y, Z.

(b) Which letter(s) is/are star-shaped?

**Solution:** K, L, T, V, X, Y.

(c) Which letter(s) has/have non-zero 1st Betti number  $b_1$ ?

**Solution:** A, B, D, O, P, Q, R.

- 3. Prove the following statements about deformation retracts by explicitly constructing  $\Psi_t$ .
  - (a) Show that the Möbius strip  $\Sigma$  defined in Example 4.11 deformation retracts onto a circle. [Hence,  $H^1_{dR}(\Sigma) = H^1_{dR}(\mathbb{S}^1) = \mathbb{R}$ .]

Solution: Let

$$F: (-1,1) \times (0,2\pi) \to \Sigma \qquad \qquad \widetilde{F}: (-1,1) \times (-\pi,\pi) \to \Sigma$$
$$F(u,\theta) = \begin{bmatrix} \left(3+u\cos\frac{\theta}{2}\right)\cos\theta\\ \left(3+u\cos\frac{\theta}{2}\right)\sin\theta\\ u\sin\frac{\theta}{2} \end{bmatrix} \qquad \qquad \widetilde{F}(\widetilde{u},\widetilde{\theta}) = \begin{bmatrix} \left(3+\widetilde{u}\cos\frac{\widetilde{\theta}}{2}\right)\cos\widetilde{\theta}\\ \left(3+\widetilde{u}\cos\frac{\widetilde{\theta}}{2}\right)\sin\widetilde{\theta}\\ \widetilde{u}\sin\frac{\widetilde{\theta}}{2} \end{bmatrix}$$

be two local parametrizations of  $\Sigma$  which cover  $\Sigma$ . Define  $\{\Psi_t : \Sigma \to \Sigma\}_{t \in [0,1]}$  be a  $C^1$  family of smooth maps as

$$\begin{cases} \Psi_t (\mathsf{F}(u,\theta)) = \mathsf{F}((1-t)u,\theta) \\ \Psi_t (\widetilde{\mathsf{F}}(\widetilde{u},\widetilde{\theta})) = \widetilde{\mathsf{F}}((1-t)\widetilde{u},\widetilde{\theta}) \end{cases}$$

Then, it is easy to see that

$$\begin{cases} \Psi_{0}(\mathsf{F}(u,\theta)) = \mathsf{F}(u,\theta) \\ \Psi_{0}(\widetilde{\mathsf{F}}(\widetilde{u},\widetilde{\theta})) = \widetilde{\mathsf{F}}(\widetilde{u},\widetilde{\theta}) & ' \\ \begin{cases} \Psi_{1}(\mathsf{F}(u,\theta)) = \mathsf{F}(0,\theta) = \begin{bmatrix} 3\cos\theta & 3\sin\theta & 0 \end{bmatrix}^{T} \\ \Psi_{1}(\widetilde{\mathsf{F}}(\widetilde{u},\widetilde{\theta})) = \widetilde{\mathsf{F}}(0,\widetilde{\theta}) = \begin{bmatrix} 3\cos\widetilde{\theta} & 3\sin\widetilde{\theta} & 0 \end{bmatrix}^{T} & ' \\ \begin{cases} \Psi_{t}(\mathsf{F}(0,\theta)) = \mathsf{F}(0,\theta) \\ \Psi_{t}(\widetilde{\mathsf{F}}(0,\widetilde{\theta})) = \widetilde{\mathsf{F}}(0,\widetilde{\theta}) \end{cases}. \end{cases}$$

Hence, the Möbius strip  $\Sigma$  defined in Example 4.11 deformation retracts onto a circle with radius 3. Since a circle with radius 3 is diffeomorphic to S<sup>1</sup>, we have  $H^1_{dR}(\Sigma) = H^1_{dR}(S^1) = \mathbb{R}$ .

(b) The zero section  $\Sigma_0$  of the tangent bundle *TM* of a smooth manifold *M* is defined to be:

$$\Sigma_0 := \{ (p, \mathbf{0}_p) \in p \times T_p M : p \in M \}$$

where  $0_p$  is the zero vector in  $T_pM$ . Show that  $\Sigma_0$  is a deformation retract of *TM*. [Hence,  $H^*_{dR}(TM) = H^*_{dR}(\Sigma_0) = H^*_{dR}(M)$ .]

**Solution:** Let  $\{F_i(u_1, \dots, u_n) : U_i \to O_i\}$  be a family of local parametrizations of M which covers M, the induced local parametrization  $\widetilde{F}_i : U_i \times \mathbb{R}^n \to TM$  of the tangent bundle TM is

$$\widetilde{F}_i(u_1,\cdots,u_n,a^1,\cdots,a^n)=\left(F_i(u_1,\cdots,u_n),a^1\frac{\partial}{\partial u_1}+\cdots+a^n\frac{\partial}{\partial u_n}\right)\in TM$$

and

$$\Sigma_0 = \bigcup_i \widetilde{F}_i(u_1, \cdots, u_n, 0, \cdots, 0).$$

Define  $\{\Psi_t : TM \to TM\}_{t \in [0,1]}$  be a  $C^1$  family of smooth maps as

$$\Psi_t\bigg(\widetilde{F}_i(u_1,\cdots,u_n,a^1,\cdots,a^n)\bigg)=\widetilde{F}_i(u_1,\cdots,u_n,(1-t)a^1,\cdots,(1-t)a^n).$$

Then for any *i*, we have

$$\Psi_0\bigg(\widetilde{F}_i(u_1,\cdots,u_n,a^1,\cdots,a^n)\bigg) = \widetilde{F}_i(u_1,\cdots,u_n,a^1,\cdots,a^n),$$
  
$$\Psi_1\bigg(\widetilde{F}_i(u_1,\cdots,u_n,a^1,\cdots,a^n)\bigg) = \widetilde{F}_i(u_1,\cdots,u_n,0,\cdots,0),$$
  
$$\Psi_t\bigg(\widetilde{F}_i(u_1,\cdots,u_n,0,\cdots,0)\bigg) = \widetilde{F}_i(u_1,\cdots,u_n,0,\cdots,0).$$

Thus,  $\Sigma_0$  is a deformation retract of *TM*.

In the following problems, you may assume the Poincaré's Lemma and Deformation Retract Invariance hold on any  $H^k$ . Also, we may use the following fact without proof:

On a compact, connected orientable manifold *M* without boundary, then:

- dim  $H^n(M) = 1$  where  $n = \dim M$
- $H^n(M \setminus \{p\}) = 0$  for any  $p \in M$ .
- 4. Let  $\mathbb{T}^2$  be the 2-dimensional torus. Show that  $b_1(\mathbb{T}^2) = 2$ .

**Solution:** Divide the torus horizontally and "fatten" each half-torus a bit. Take U to be the upper-half, and V to be the lower-half.

Then each of U and V are diffeomorphic to an annulus, which can be deformation retracted onto a circle. Hence:

$$\dim H^0(U) = 1, \quad \dim H^1(U) = 1, \quad \dim H^2(U) = 0.$$

The same for *V*.

Observe that  $U \cap V$  is a disjoint union of two thin cylinders, so

$$\dim H^0(U \cap V) = 2$$
,  $\dim H^1(U \cap V) = 2$ ,  $\dim H^2(U \cap V) = 0$ .

Putting these into the Mayer-Vietoris sequence can consider the alternating sum, and combining with the given fact that dim  $H^2(\mathbb{T}^2) = 1$ , one can then conclude dim  $H^1(\mathbb{T}^2) = 2$  easily.

5. Given two compact smooth 2-manifolds *A* and *B* without boundary, its connected sum *A*#*B* is a 2-manifold obtained by removing an open ball in each of *A* and *B*, and then gluing them along the two boundary circles:



(a) Show that *A*#*B* is orientable if both *A* and *B* are so. [Hint: use partitions of unity to construct a global non-vanishing 2-form.]

**Solution:** Given that *A* is orientable, it has an oriented atlas (whose transition maps have positive Jacobian determinant). Its subset  $A \setminus B_{\varepsilon}(p)$  is also orientable since one can parametrize it by the atlas induced from that of *A*. The induced atlas is clearly orientable since the transition maps are simply restrictions of those in the atlas of *A*. Similarly,  $B \setminus B_{\varepsilon}(q)$  is also orientable.

Now regard  $A \setminus B_{\varepsilon}(p)$  and  $B \setminus B_{\varepsilon}(q)$  are subsets of A # B by "fattening" them if necessary. Let  $\Omega_A$  and  $\Omega_B$  be the orientation 2-forms of  $A \setminus B_{\varepsilon}(p)$  and  $B \setminus B_{\varepsilon}(q)$  respectively.

WLOG, we assume that  $\Omega_A(\frac{\partial}{\partial u_1}, \dots, \frac{\partial}{\partial u_n})$  and  $\Omega_B(\frac{\partial}{\partial u_1}, \dots, \frac{\partial}{\partial u_n})$ , where  $(u_1, \dots, u_n)$  are local coordinates on the overlap between  $A \setminus B_{\varepsilon}(p)$  and  $B \setminus B_{\varepsilon}(q)$ , have the same sign on the overlap.

Let  $\{\rho_A, \rho_B\}$  be a partitions of unity subordinate to  $\{A \setminus B_{\varepsilon}(p), B \setminus B_{\varepsilon}(q)\}$ , then construct:

$$\Omega := \rho_A \Omega_A + \rho_B \Omega_B.$$

It is then a smooth non-vanishing 2-form on A#B. It is non-vanishing because at each point  $x \in A#B$ , at least one of  $\rho_A(x)$  and  $\rho_B(x)$  is non-zero.

(b) Using Mayer-Vietoris sequence, show that  $b_1(A#B) = b_1(A) + b_1(B)$ .

**Solution:** (Sketch) First apply Mayer-Vietoris to show that  $b_1(A) = b_1(A \setminus B_{\varepsilon}(p))$ and similarly for  $b_1(B)$ . To prove this, pick  $U = A \setminus \{p\}$  and  $V = B_{\varepsilon}(p)$ , then  $U \cap V$  is an annulus. From the given fact that  $H^2(U) = 0$ , one can show  $b_1(A) = b_1(A \setminus B_{\varepsilon}(p))$  by considering an alternating sum in the Mayer-Vietoris sequence. Secondly, apply Mayer-Vietoris again with  $U = A \setminus B_{\varepsilon}(p) \subset A \# B$  and  $V = B \setminus B_{\varepsilon}(q) \subset A \# B$ , then  $U \cap V$  is an annulus. The rest follows by considering an alternating sum of the Mayer-Vietoris sequence.

6. ( $\infty$  points (bonus)) Prove or disprove: "Every Hodge cohomology class of a non-singular complex projective manifold  $X \subset \mathbb{CP}^N$  is a linear combination with rational coefficients of the cohomology classes of complex subvarieties of *X*."

End of all MATH 4033 homework. "The chain will be broken and all men will have their reward." (from Les Misérables)