Problem Set \#3

MATH 4033, Calculus on Manifold, Spring 2019

Problem 1. (a) Show that any complex manifold (i.e. transition maps are holomorphic) must be orientable.

Solution. Let $F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ and $G\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)$ be local parametrizations on a complex manifold M. Since the transition map

$$
\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)=G^{-1} \circ F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

is holomorphic, the Cauchy-Riemann equations must be satisfied: $\forall 1 \leq i, j \leq n$,

$$
\frac{\partial u_{i}}{\partial x_{j}}=\frac{\partial v_{i}}{\partial y_{j}} \quad \text { and } \quad \frac{\partial v_{i}}{\partial x_{j}}=-\frac{\partial u_{i}}{\partial y_{j}}
$$

Thus the Jacobian of the transition map is given by the block matrix:

$$
D\left(G^{-1} \circ F\right)=\left[\begin{array}{c|c}
\frac{\partial u_{i}}{\partial x_{j}} & \frac{\partial u_{i}}{\partial y_{j}} \\
\hline \frac{\partial v_{i}}{\partial x_{j}} & \frac{\partial v_{i}}{\partial y_{j}}
\end{array}\right]=\left[\begin{array}{c|c}
\frac{\partial u_{i}}{\partial x_{j}} & \frac{\partial u_{i}}{\partial y_{j}} \\
\hline-\frac{\partial u_{i}}{\partial y_{j}} & \frac{\partial u_{i}}{\partial x_{j}}
\end{array}\right]
$$

To compute its determinant we will need a formula from linear algebra to compute the determinant of block matrices of the form

$$
\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right)
$$

This is achieved by using the relation

$$
\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
I & I \\
i I & -i I
\end{array}\right)\left(\begin{array}{cc}
A+i B & \\
& A-i B
\end{array}\right)\left(\begin{array}{cc}
I & -i I \\
I & i I
\end{array}\right)
$$

Here $I=I_{n}$ is the $n \times n$ identity matrix, while $i=\sqrt{-1}$. Note that

$$
\left(\begin{array}{cc}
I & I \\
i I & -i I
\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{cc}
I & -i I \\
I & i I
\end{array}\right)
$$

Therefore,

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
A+i B & \\
& A-i B
\end{array}\right) \\
& =\operatorname{det}(A+i B) \operatorname{det}(A-i B) \\
& =\operatorname{det}(A+i B) \operatorname{det}(\overline{A+i B}) \\
& =\operatorname{det}(A+i B) \overline{\operatorname{det}(A+i B)} \geq 0
\end{aligned}
$$

Since $\operatorname{det} D\left(G^{-1} \circ F\right) \neq 0$, thus it must follow that

$$
\operatorname{det} D\left(G^{-1} \circ F\right)=\operatorname{det}\left[\begin{array}{c|c}
\frac{\partial u_{i}}{\partial x_{j}} & \frac{\partial u_{i}}{\partial y_{j}} \\
\hline-\frac{\partial u_{i}}{\partial y_{j}} & \frac{\partial u_{i}}{\partial x_{j}}
\end{array}\right]>0
$$

Hence by definition, M is orientable.
(b) A smooth manifold $M^{2 n}$ is called a symplectic manifold if there exists a smooth 2-form ω such that $d \omega=0$ and the only vector field X such that $\iota_{X} \omega=0$ is the zero vector field. Show that any symplectic manifold must be orientable.

Solution. Consider the $2 n$-form

$$
\Omega:=\underbrace{\omega \wedge \cdots \wedge \omega}_{n \text { times }}
$$

We will show that Ω is a non-vanishing form on M. By Proposition 4.25, this will imply that M is orientable.

Let $p \in M$. Let $\left(u_{1}, \ldots, u_{n}\right)$ be local coordinates around p. Then we can write

$$
\omega_{p}=\sum_{i, j=1}^{n} \omega_{i j}(p) d u^{i} \wedge d u^{j}
$$

Since ω is a differential form, it is alternating, thus the matrix $\left[\omega_{i j}(p)\right]$ is a real skewsymmetric matrix. Moreover, the assumption "if $\iota_{X} \omega=0$, then $X=0$ " implies that the linear map $X_{p} \mapsto\left(\iota_{X} \omega\right)_{p}$ is injective (hence bijective since $T_{p} M$ and $T_{p}^{*} M$ have the same finite dimension). Thus, $\left[\omega_{i j}(p)\right]$ is an invertible matrix. Therefore, by results in linear algebra, $\left[\omega_{i j}(p)\right]$ can be decomposed into

$$
\left[\omega_{i j}(p)\right]=Q\left(\begin{array}{ccc}
\lambda_{1} J & & \\
& \ddots & \\
& & \lambda_{n} J
\end{array}\right) Q^{T}
$$

where Q is orthogonal, $J=\left(\begin{array}{cc} & 1 \\ -1 & \end{array}\right)$, and $\lambda_{i}>0$ such that $\pm \lambda_{i} \sqrt{-1}$ are the eigenvalues of $\left[\omega_{i j}(p)\right]$. Consequently, there exists a basis $\left\{e_{i}^{*}\right\}_{i=1}^{2 n}$ for $T_{p}^{*} M$ such that

$$
\omega_{p}=\sum_{k=1}^{n} \lambda_{k} e_{2 k-1}^{*} \wedge e_{2 k}^{*}
$$

which implies that

$$
\Omega_{p}=\omega_{p} \wedge \cdots \wedge \omega_{p}=n!\left(\lambda_{1} \cdots \lambda_{n}\right) e_{1}^{*} \wedge \cdots \wedge e_{2 n}^{*} \neq 0
$$

since $\lambda_{1} \cdots \lambda_{n}>0$. Since $\Omega_{p} \neq 0$ is true for any $p \in M$, we conclude that Ω is a nonvanishing $2 n$-form on M. This completes the proof.

Problem 2. Let M^{n} be a smooth manifold. For each $p \in M$ covered by local coordinates $\left(u_{1}, \ldots, u_{n}\right)$, we denote

$$
\wedge^{n} T_{p}^{*} M:=\operatorname{span}\left\{\left.\left.d u^{1}\right|_{p} \wedge \cdots \wedge d u^{n}\right|_{p}\right\}
$$

Denote the n-form bundle of M by $\wedge^{n} T^{*} M:=\bigcup_{p \in M}\{p\} \times \wedge^{n} T_{p}^{*} M$.
(a) Show that the n-form bundle of M is a smooth manifold. What is its dimension?

Solution. Denote the local parametrization around p by $F\left(u_{1}, \ldots, u_{n}\right): \mathcal{U}_{F} \rightarrow \mathcal{O}_{F}$. Define

$$
\begin{aligned}
\tilde{F}: \mathcal{U}_{F} \times \mathbb{R} & \rightarrow \pi^{-1}\left(\mathcal{O}_{F}\right) \\
\left(u_{1}, \ldots, u_{n}, a\right) & \mapsto\left(F\left(u_{1}, \ldots, u_{n}\right),\left.a\left(d u^{1} \wedge \cdots \wedge d u^{n}\right)\right|_{F\left(u_{1}, \ldots, u_{n}\right)}\right)
\end{aligned}
$$

where $\pi: \wedge^{n} T^{*} M \rightarrow M$ is the projection $\left(p, \omega_{p}\right) \mapsto p$, and for convenience, we denote $\left.\left(d u^{1} \wedge \cdots \wedge d u^{n}\right)\right|_{p}=\left.\left.d u^{1}\right|_{p} \wedge \cdots \wedge d u^{n}\right|_{p}$. Then \tilde{F} is a local parametrization on $\wedge^{n} T^{*} M$.

Let $G\left(v_{1}, \ldots, v_{n}\right): \mathcal{U}_{G} \rightarrow \mathcal{O}_{G}$ be another local parametrization around p, and let \tilde{G} be the similarly induced local parametrization on $\wedge^{n} T^{*} M$. We consider the transition maps:

$$
\left(v_{1}, \ldots, v_{n}, b\right)=\tilde{G}^{-1} \circ \tilde{F}\left(u_{1}, \ldots, u_{n}, a\right)
$$

Then we have $\tilde{G}\left(v_{1}, \ldots, v_{n}, b\right)=\tilde{F}\left(u_{1}, \ldots, u_{n}, a\right)$, and so by definition of \tilde{F}, \tilde{G}, we have

$$
\begin{aligned}
G\left(v_{1}, \ldots, v_{n}\right) & =F\left(u_{1}, \ldots, u_{n}\right) \\
\left.b\left(d v^{1} \wedge \cdots \wedge d v^{n}\right)\right|_{G\left(v_{1}, \ldots, v_{n}\right)} & =\left.a\left(d u^{1} \wedge \cdots \wedge d u^{n}\right)\right|_{F\left(u_{1}, \ldots, u_{n}\right)}
\end{aligned}
$$

Fron these we also see that

$$
\begin{aligned}
\left.b\left(d v^{1} \wedge \cdots \wedge d v^{n}\right)\right|_{G\left(v_{1}, \ldots, v_{n}\right)} & =\left.a \frac{\partial\left(u_{1}, \ldots, u_{n}\right)}{\partial\left(v_{1}, \ldots, v_{n}\right)}\left(d v^{1} \wedge \cdots \wedge d v^{n}\right)\right|_{G\left(v_{1}, \ldots, v_{n}\right)} \\
\therefore \quad b & =a \operatorname{det} D\left(F^{-1} \circ G\right) \\
& =\frac{a}{\operatorname{det} D\left(G^{-1} \circ F\right)}
\end{aligned}
$$

since $\operatorname{det} D\left(G^{-1} \circ F\right) \neq 0$ on $\mathcal{V}:=\mathcal{U}_{F} \cap \mathcal{U}_{G}$. Therefore,

$$
\tilde{G}^{-1} \circ \tilde{F}\left(u_{1}, \ldots, u_{n}, a\right)=\left(G^{-1} \circ F\left(u_{1}, \ldots, u_{n}\right), \frac{a}{\operatorname{det} D\left(G^{-1} \circ F\right)}\right)
$$

Since M is a smooth manifold, thus $G^{-1} \circ F$ is smooth. The last component is a rational function on \mathcal{V}, thus it is also smooth. Hence, $\tilde{G}^{-1} \circ \tilde{F}$.

Hence by definition, $\wedge^{n} T^{*} M$ is a smooth manifold of dimension $\operatorname{dim} \wedge^{n} T^{*} M=n+1$.
(b) Show that if M^{n} is orientable, then $\wedge^{n} T^{*} M$ is diffeomorphic to $M \times \mathbb{R}$.

Solution. By Proposition 4.25 in lecture notes, it follows that there exists a non-vanishing smooth n-form Ω globally defined on M. Then for each $p \in M, \Omega_{p}$ is nonzero. Since $\wedge^{n} T_{p}^{*} M$ is 1-dimensional, thus

$$
\begin{equation*}
\wedge^{n} T_{p}^{*} M=\operatorname{span}\left\{\Omega_{p}\right\} \tag{1}
\end{equation*}
$$

Define $\Phi: M \times \mathbb{R} \rightarrow \wedge^{n} T^{*} M$ by

$$
\Phi(p, \lambda):=\left(p, \lambda \Omega_{p}\right)
$$

Since Ω is non-vanishing, this map Φ is injective. Indeed, if $\left(p, \lambda \Omega_{p}\right)=\left(q, \mu \Omega_{q}\right)$, then $p=q$ and $\lambda \Omega_{p}=\nu \Omega_{p}$ implies that $\lambda=\mu$ (since $\Omega_{p} \neq 0$). Finally, as an immediate consequence of (1), Φ is also surjective. Hence, Φ is a bijection.

Let $p \in M$. Let $F\left(u_{1}, \ldots, u_{n}\right): \mathcal{U} \rightarrow \mathcal{O}$ be a local parametrization around p, and let \tilde{F} be the induced local parametrization on $\wedge^{n} T^{*} M$ defined in part (a). Consider

$$
\begin{aligned}
\left(v_{1}, \ldots, v_{n}, a\right) & =\tilde{F}^{-1} \circ \Phi \circ(F \times i d)\left(u_{1}, \ldots, u_{n}, \lambda\right) \\
& =\tilde{F}^{-1} \circ \Phi\left(F\left(u_{1}, \ldots, u_{n}\right), \lambda\right) \\
& =\tilde{F}^{-1}\left(F\left(u_{1}, \ldots, u_{n}\right),\left.\lambda \Omega\right|_{F\left(u_{1}, \ldots, u_{n}\right)}\right)
\end{aligned}
$$

On \mathcal{O}, we may write

$$
\Omega=f d u^{1} \wedge \cdots \wedge d u^{n}
$$

for some locally defined $f \in C^{\infty}(\mathcal{O})$. Then it follows that

$$
a=\lambda f\left(F\left(u_{1}, \ldots, u_{n}\right)\right)
$$

and so

$$
\tilde{F}^{-1} \circ \Phi \circ(F \times i d)\left(u_{1}, \ldots, u_{n}, \lambda\right)=\left(u_{1}, \ldots, u_{n}, \lambda(f \circ F)\left(u_{1}, \ldots, u_{n}\right)\right)
$$

Since f is smooth on \mathcal{O}, thus $f \circ F$ is smooth on \mathcal{U}, therefore $\tilde{F}^{-1} \circ \Phi \circ(F \times i d)$. is smooth. Hence, Φ is smooth.

Finally, since Ω is non-vanishing, thus f is also non-vanishing on \mathcal{U}. Consequently we have

$$
(F \times i d)^{-1} \circ \Phi^{-1} \circ \tilde{F}\left(v_{1}, \ldots, v_{n}, a\right)=\left(v_{1}, \ldots, v_{n}, \frac{a}{(f \circ F)\left(v_{1}, \ldots, v_{n}\right)}\right)
$$

and so Φ^{-1} is also smooth.

Hence by definition, Φ is a diffeomorphism.

Problem 3. Let ω be the n-form on $\mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$ defined by:

$$
\omega=\frac{1}{|\vec{x}|^{n+1}} \sum_{i=1}^{n+1}(-1)^{i} x_{i} d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1}
$$

where $\vec{x}=\left(x_{1}, \ldots, x_{n+1}\right)$ and $|\vec{x}|=\sqrt{x_{1}^{2}+\cdots+x_{n+1}^{2}}$.
(a) Show that ω is closed.

Solution. By direct computation, we have

$$
\begin{aligned}
d \omega & =\sum_{i=1}^{n}(-1)^{i-1}\left(\sum_{j=1}^{n+1} \frac{\partial}{\partial x^{j}} \frac{x_{i}}{|\vec{x}|^{n+1}}\right) d x^{j} \wedge d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1} \\
& =\sum_{i=1}^{n}(-1)^{i-1}\left(\frac{\partial}{\partial x^{i}} \frac{x_{i}}{|\vec{x}|^{n+1}}\right) d x^{i} \wedge d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1} \\
& =\sum_{i=1}^{n}\left(\frac{1}{|\vec{x}|^{n+1}}-\frac{n+1}{2} \cdot \frac{2 x_{i}^{2}}{|\vec{x}|^{n+3}}\right) d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1} \\
& =\left[\sum_{i=1}^{n} \frac{1}{|\vec{x}|^{n+1}}-\frac{n+1}{|\vec{x}|^{n+3}} \sum_{i=1}^{n} x_{i}^{2}\right] d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\left(\frac{n+1}{|\vec{x}|^{n+1}}-\frac{\left(n+\left.1| | \vec{x}\right|^{2}\right.}{|\vec{x}|^{n+3}}\right) d x^{1} \wedge \cdots \wedge d x^{n} \\
& =0
\end{aligned}
$$

Hence by definition, ω is closed.
(b) Let $\mathbb{S}^{n}=\left\{\vec{x} \in \mathbb{R}^{n+1}:|\vec{x}|=1\right\}$. Given a smooth function $f: \mathbb{S}^{n} \rightarrow(0, \infty)$ and denote

$$
\Sigma_{f}:=\left\{f(\vec{x}) \vec{x}: \vec{x} \in \mathbb{S}^{n}\right\}
$$

i. Show that Σ_{f} is an n-submanifold of $\mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$.

Solution. (1) Since $f(\vec{x}) \neq 0$ for all $\vec{x} \in \mathbb{S}^{n}$, thus $\overrightarrow{0} \notin \Sigma_{f}$ and so Σ_{f} is a subset of $\mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$.
(2) Let $\vec{x} \in \mathbb{S}^{n}$ and let $F\left(u_{1}, \ldots, u_{n}\right): \mathcal{U}_{F} \rightarrow \mathcal{O}_{F}$ be a local parametrization around \vec{x}. Define $\tilde{F}: \mathcal{U}_{F} \rightarrow \mathcal{V}_{F}$ by

$$
\tilde{F}\left(u_{1}, \ldots, u_{n}\right):=f\left(F\left(u_{1}, \ldots, u_{n}\right)\right) F\left(u_{1}, \ldots, u_{n}\right)
$$

where $\mathcal{V}_{F}:=\left\{f(\vec{x}) \vec{x}: \vec{x} \in \mathcal{O}_{F}\right\}$. The \tilde{F} is a local parametrization around $f(\vec{x}) \vec{x}$ on Σ_{f}.

Let $G\left(v_{1}, \ldots, v_{n}\right)$ be another local parametrization around \vec{x} and let \tilde{G} be the similarly induced local parametrization around $f(\vec{x}) \vec{x}$ on Σ_{f}. Consider the transition map

$$
\left(v_{1}, \ldots, v_{n}\right)=\tilde{G}^{-1} \circ \tilde{F}\left(u_{1}, \ldots, u_{n}\right)
$$

Then we have $\tilde{G}\left(v_{1}, \ldots, v_{n}\right)=\tilde{F}\left(u_{1}, \ldots, u_{n}\right)$, i.e.

$$
\begin{equation*}
f\left(G\left(v_{1}, \ldots, v_{n}\right)\right) G\left(v_{1}, \ldots, v_{n}\right)=f\left(F\left(u_{1}, \ldots, u_{n}\right)\right) F\left(u_{1}, \ldots, u_{n}\right) \tag{2}
\end{equation*}
$$

Since $F\left(u_{1}, \ldots, u_{n}\right), G\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{S}^{n}$, thus by taking norm of both sides, and using the fact that $f>0$, we obtain

$$
f\left(G\left(v_{1}, \ldots, v_{n}\right)\right)=f\left(F\left(u_{1}, \ldots, u_{n}\right)\right)
$$

Substitute this back into (2), we see that $G\left(v_{1}, \ldots, v_{n}\right)=F\left(u_{1}, \ldots, u_{n}\right)$. Thus

$$
\tilde{G}^{-1} \circ \tilde{F}\left(u_{1}, \ldots, u_{n}\right)=G^{-1} \circ F\left(u_{1}, \ldots, u_{n}\right)
$$

is smooth. Hence by definition, Σ_{f} is a smooth n-manifold.
(3) Denote $\iota_{f}: \Sigma_{f} \rightarrow \mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$ the inclusion map. Then we have

$$
\iota_{f} \circ \tilde{F}\left(u_{1}, \ldots, u_{n}\right)=f\left(F\left(u_{1}, \ldots, u_{n}\right)\right) F\left(u_{1}, \ldots, u_{n}\right)
$$

By the product rule, we have

$$
\frac{\partial \iota_{f}}{\partial u_{i}}=\frac{\partial(f \circ F)}{\partial u_{i}} F\left(u_{1}, \ldots, u_{n}\right)+(f \circ F)\left(u_{1}, \ldots, u_{n}\right) \frac{\partial F}{\partial u_{i}}
$$

Here, since $F\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n+1}$, it makes sense to speak of $\frac{\partial F}{\partial u_{i}}$ and it is tangent to \mathbb{S}^{n}. Thus, we identify $\frac{\partial F}{\partial u_{i}}$ as the tangent vector $\frac{\partial}{\partial u_{i}}$, as in the case of regular surface.

Taking $\mathcal{B}=\left\{\frac{\partial F}{\partial u_{1}}, \ldots, \frac{\partial F}{\partial u_{n}}, F\right\}$ as a basis for $T_{f(\vec{x}) \vec{x}}\left(\mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}\right) \simeq \mathbb{R}^{n+1}$, we see that

$$
\left[\frac{\partial \iota_{f}}{\partial u_{i}}\right]_{\mathcal{B}}=\left(\begin{array}{llllll}
0 & \cdots & f \circ F & \cdots & 0 & \frac{\partial(f \circ F)}{\partial u_{i}}
\end{array}\right)^{T}
$$

where $f \circ F$ is at the i-th position. Now, since the matrix

$$
\left(\begin{array}{cccc}
f \circ F & 0 & \cdots & 0 \\
0 & f \circ F & \cdots & 0 \\
\vdots & & & \\
0 & 0 & \cdots & f \circ F \\
\frac{\partial(f \circ F)}{\partial u_{1}} & \frac{\partial(f \circ F)}{\partial u_{2}} & \cdots & \frac{\partial(f \circ F)}{\partial u_{n}}
\end{array}\right)=\left(\begin{array}{c}
\\
(f \circ F) I_{n} \\
\\
\nabla(f \circ F)
\end{array}\right)
$$

has full rank (because $f \neq 0$), this shows that the vectors $\frac{\partial \iota_{f}}{\partial u_{i}}$ are linearly independent. Thus, $\left[\iota_{f}\right]$ has full rank. Therefore, ι_{f} is an immersion.

Hence by definition, Σ_{f} is a submanifold of $\mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$.
ii. Denote $\iota_{f}: \Sigma_{f} \rightarrow \mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$ the inclusion map. Show that the absolute value of $\left|\int_{\Sigma_{f}} \iota_{f}^{*} \omega\right|$ is independent of the function $f: \mathbb{S}^{n} \rightarrow(0, \infty)$.
Solution. We need to show that for any smooth functions $f, g: \mathbb{S}^{n} \rightarrow(0 . \infty)$, we have

$$
\begin{equation*}
\left|\int_{\Sigma_{f}} \iota_{f}^{*} \omega\right|=\left|\int_{\Sigma_{g}} \iota_{g}^{*} \omega\right| \tag{3}
\end{equation*}
$$

Since f, g are continuous and \mathbb{S}^{n} is compact, both of them achieve a positive minimum on \mathbb{S}^{n}. Thus, there is an $r>0$ such that $f, g>r$ on \mathbb{S}^{n}. Denote $\mathbb{S}^{n}(r)$ the sphere of radius r centered at $\overrightarrow{0}$, and denote $\iota_{r}: \mathbb{S}^{n}(r) \rightarrow \mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$ the inclusion map.

Let M_{f} be the closed region bounded between Σ_{f} and $\mathbb{S}^{n}(r)$. Then M_{f} is a compact orientable smooth $(n+1)$-manifold with boundary

$$
\partial M=\Sigma_{f} \sqcup \mathbb{S}^{n}(r)
$$

This can be checked easily and we omit the details. Now, since by (a), ω is closed, thus by the generalized Stokes' Theorem,

$$
0=\int_{M} d \omega=\int_{\partial M} \omega=\varepsilon_{f} \int_{\Sigma_{f}} \iota_{f}^{*} \omega+\varepsilon_{r} \int_{\mathbb{S}^{n}(r)} \iota_{r}^{*} \omega
$$

where $\varepsilon_{f}, \varepsilon_{r} \in\{ \pm 1\}$ depends on the chosen orientation. Thus,

$$
\varepsilon_{f} \int_{\Sigma_{f}} \iota_{f}^{*} \omega=-\varepsilon_{r} \int_{\mathbb{S}^{n}(r)} \iota_{r}^{*} \omega
$$

Taking absolute value, we obtain

$$
\begin{equation*}
\left|\int_{\Sigma_{f}} \iota_{f}^{*} \omega\right|=\left|\int_{\mathbb{S}^{n}(r)} \iota_{r}^{*} \omega\right| \tag{4}
\end{equation*}
$$

Now do the same for g; namely, consider M_{g} the closed region bounded between Σ_{g} and $\mathbb{S}^{n}(r)$. By the same argument, we also have

$$
\begin{equation*}
\left|\int_{\Sigma_{g}} \iota_{g}^{*} \omega\right|=\left|\int_{\mathbb{S}^{n}(r)} \iota_{r}^{*} \omega\right| \tag{5}
\end{equation*}
$$

Combining (4) and (5) proves the desired equality (3).
iii. Find the value of the above integral. (Hint: It may be difficult to compute it directly, but you may pick a particular nice function f, and also find a nicer n-form η on \mathbb{R}^{n+1} such that $\iota_{f}^{*} \omega=\iota_{f}^{*} \eta$, then find the integral of $\iota_{f}^{*} \eta$ over Σ_{f}).
Solution. Note that the result of part ii also tells us that

$$
\left|\int_{\Sigma_{f}} \iota_{f}^{*} \omega\right|=\left|\int_{\mathbb{S}^{n}(r)} \iota_{r}^{*} \omega\right|=\left|\int_{\mathbb{S}^{n}} \iota^{*} \omega\right|
$$

where $\iota^{*}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$ denotes the inclusion map. Thus it suffices to compute the rightmost term.

Following the hint, we consider

$$
\eta=\sum_{i=1}^{n+1}(-1)^{i} x_{i} d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1}
$$

Clearly, η is a smooth n-form defined on the whole \mathbb{R}^{n+1}. Moreover, since every point \vec{x} on \mathbb{S}^{n} satisfies $|\vec{x}|=1$, thus $\iota_{f}^{*} \omega=\iota_{f}^{*} \eta$. Finally, by direct computation, we have

$$
d \eta=(n+1) d x^{1} \wedge \cdots \wedge d x^{n+1}
$$

Therefore by the generalized Stokes' theorem again,

$$
\begin{aligned}
\int_{\mathbb{S}^{n}} \iota^{*} \omega & =\int_{\mathbb{S}^{n}} \iota^{*} \eta \\
& =\int_{\partial B^{n+1}} \eta \\
& =\int_{B^{n+1}} d \eta \\
& =\int_{B^{n+1}}(n+1) d x^{1} \wedge \cdots \wedge d x^{n+1} \\
& =(n+1) \int_{B^{n+1}} d x^{1} \cdots d x^{n} \\
& =(n+1) \operatorname{Vol}\left(B^{n+1}\right)
\end{aligned}
$$

where B^{n+1} is the closed unit ball in \mathbb{R}^{n+1}. Hence we conclude that

$$
\left|\int_{\Sigma_{f}} \iota_{f}^{*} \omega\right|=(n+1) \operatorname{Vol}\left(B^{n+1}\right)
$$

