
Problem Set #3

MATH 4033, Calculus on Manifold, Spring 2019

Problem 1. (a) Show that any complex manifold (i.e. transition maps are holomorphic) must
be orientable.

Solution. Let F (x1, . . . , xn, y1, . . . , yn) andG(u1, . . . , un, v1, . . . , vn) be local parametriza-
tions on a complex manifold M . Since the transition map

(u1, . . . , un, v1, . . . , vn) = G−1 ◦ F (x1, . . . , xn, y1, . . . , yn)

is holomorphic, the Cauchy-Riemann equations must be satisfied: ∀1 ≤ i, j ≤ n,

∂ui
∂xj

=
∂vi
∂yj

and
∂vi
∂xj

= −∂ui
∂yj

Thus the Jacobian of the transition map is given by the block matrix:

D(G−1 ◦ F ) =


∂ui
∂xj

∂ui
∂yj

∂vi
∂xj

∂vi
∂yj

 =


∂ui
∂xj

∂ui
∂yj

−∂ui
∂yj

∂ui
∂xj


To compute its determinant we will need a formula from linear algebra to compute the
determinant of block matrices of the form(

A B
−B A

)
This is achieved by using the relation(

A B
−B A

)
=

1

2

(
I I
iI −iI

)(
A+ iB

A− iB

)(
I −iI
I iI

)
Here I = In is the n× n identity matrix, while i =

√
−1. Note that(

I I
iI −iI

)−1

=
1

2

(
I −iI
I iI

)
Therefore,

det

(
A B
−B A

)
= det

(
A+ iB

A− iB

)
= det(A+ iB) det(A− iB)

= det(A+ iB) det(A+ iB)

= det(A+ iB)det(A+ iB) ≥ 0
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Since detD(G−1 ◦ F ) 6= 0, thus it must follow that

detD(G−1 ◦ F ) = det


∂ui
∂xj

∂ui
∂yj

−∂ui
∂yj

∂ui
∂xj

 > 0

Hence by definition, M is orientable. �

(b) A smooth manifold M2n is called a symplectic manifold if there exists a smooth 2-form ω
such that dω = 0 and the only vector field X such that ιXω = 0 is the zero vector field.
Show that any symplectic manifold must be orientable.

Solution. Consider the 2n-form

Ω := ω ∧ · · · ∧ ω︸ ︷︷ ︸
n times

We will show that Ω is a non-vanishing form on M . By Proposition 4.25, this will imply
that M is orientable.

Let p ∈M . Let (u1, . . . , un) be local coordinates around p. Then we can write

ωp =
n∑

i,j=1

ωij(p)du
i ∧ duj

Since ω is a differential form, it is alternating, thus the matrix [ωij(p)] is a real skew-
symmetric matrix. Moreover, the assumption “if ιXω = 0, then X = 0” implies that
the linear map Xp 7→ (ιXω)p is injective (hence bijective since TpM and T ∗pM have the
same finite dimension). Thus, [ωij(p)] is an invertible matrix. Therefore, by results in linear
algebra, [ωij(p)] can be decomposed into

[ωij(p)] = Q

λ1J
. . .

λnJ

QT

where Q is orthogonal, J =

(
1

−1

)
, and λi > 0 such that ±λi

√
−1 are the eigenvalues

of [ωij(p)]. Consequently, there exists a basis {e∗i }
2n
i=1 for T ∗pM such that

ωp =
n∑
k=1

λke
∗
2k−1 ∧ e∗2k

which implies that

Ωp = ωp ∧ · · · ∧ ωp = n! (λ1 · · ·λn) e∗1 ∧ · · · ∧ e∗2n 6= 0

since λ1 · · ·λn > 0. Since Ωp 6= 0 is true for any p ∈ M , we conclude that Ω is a non-
vanishing 2n-form on M . This completes the proof. �
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Problem 2. Let Mn be a smooth manifold. For each p ∈ M covered by local coordinates
(u1, . . . , un), we denote

∧nT ∗pM := span
{
du1
∣∣
p
∧ · · · ∧ dun

∣∣
p

}
.

Denote the n-form bundle of M by ∧nT ∗M :=
⋃
p∈M

{p} × ∧nT ∗pM .

(a) Show that the n-form bundle of M is a smooth manifold. What is its dimension?

Solution. Denote the local parametrization around p by F (u1, . . . , un) : UF → OF . Define

F̃ : UF × R→ π−1(OF )

(u1, . . . , un, a) 7→
(
F (u1, . . . , un), a(du1 ∧ · · · ∧ dun)

∣∣
F (u1,...,un)

)
where π : ∧nT ∗M → M is the projection (p, ωp) 7→ p, and for convenience, we denote
(du1 ∧ · · · ∧ dun)

∣∣
p

= du1
∣∣
p
∧ · · · ∧ dun

∣∣
p
. Then F̃ is a local parametrization on ∧nT ∗M .

Let G(v1, . . . , vn) : UG → OG be another local parametrization around p, and let G̃ be the
similarly induced local parametrization on ∧nT ∗M . We consider the transition maps:

(v1, . . . , vn, b) = G̃−1 ◦ F̃ (u1, . . . , un, a)

Then we have G̃(v1, . . . , vn, b) = F̃ (u1, . . . , un, a), and so by definition of F̃ , G̃, we have

G(v1, . . . , vn) = F (u1, . . . , un)

b(dv1 ∧ · · · ∧ dvn)
∣∣
G(v1,...,vn)

= a(du1 ∧ · · · ∧ dun)
∣∣
F (u1,...,un)

Fron these we also see that

b(dv1 ∧ · · · ∧ dvn)
∣∣
G(v1,...,vn)

= a
∂(u1, . . . , un)

∂(v1, . . . , vn)
(dv1 ∧ · · · ∧ dvn)

∣∣
G(v1,...,vn)

∴ b = a detD(F−1 ◦G)

=
a

detD(G−1 ◦ F )

since detD(G−1 ◦ F ) 6= 0 on V := UF ∩ UG. Therefore,

G̃−1 ◦ F̃ (u1, . . . , un, a) =

(
G−1 ◦ F (u1, . . . , un),

a

detD(G−1 ◦ F )

)
Since M is a smooth manifold, thus G−1 ◦ F is smooth. The last component is a rational
function on V , thus it is also smooth. Hence, G̃−1 ◦ F̃ .

Hence by definition, ∧nT ∗M is a smooth manifold of dimension dim∧nT ∗M = n+ 1. �
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(b) Show that if Mn is orientable, then ∧nT ∗M is diffeomorphic to M × R.

Solution. By Proposition 4.25 in lecture notes, it follows that there exists a non-vanishing
smooth n-form Ω globally defined on M . Then for each p ∈ M , Ωp is nonzero. Since
∧nT ∗pM is 1-dimensional, thus

∧nT ∗pM = span {Ωp} (1)

Define Φ : M × R→ ∧nT ∗M by

Φ(p, λ) := (p, λΩp)

Since Ω is non-vanishing, this map Φ is injective. Indeed, if (p, λΩp) = (q, µΩq), then p = q
and λΩp = νΩp implies that λ = µ (since Ωp 6= 0). Finally, as an immediate consequence
of (1), Φ is also surjective. Hence, Φ is a bijection.

Let p ∈ M . Let F (u1, . . . , un) : U → O be a local parametrization around p, and let F̃ be
the induced local parametrization on ∧nT ∗M defined in part (a). Consider

(v1, . . . , vn, a) = F̃−1 ◦ Φ ◦ (F × id)(u1, . . . , un, λ)

= F̃−1 ◦ Φ (F (u1, . . . , un), λ)

= F̃−1
(
F (u1, . . . , un), λΩ

∣∣
F (u1,...,un)

)
On O, we may write

Ω = fdu1 ∧ · · · ∧ dun

for some locally defined f ∈ C∞(O). Then it follows that

a = λf(F (u1, . . . , un))

and so

F̃−1 ◦ Φ ◦ (F × id)(u1, . . . , un, λ) =
(
u1, . . . , un, λ(f ◦ F )(u1, . . . , un)

)
Since f is smooth onO, thus f ◦F is smooth on U , therefore F̃−1 ◦Φ◦ (F × id). is smooth.
Hence, Φ is smooth.

Finally, since Ω is non-vanishing, thus f is also non-vanishing on U . Consequently we have

(F × id)−1 ◦ Φ−1 ◦ F̃ (v1, . . . , vn, a) =

(
v1, . . . , vn,

a

(f ◦ F )(v1, . . . , vn)

)
and so Φ−1 is also smooth.

Hence by definition, Φ is a diffeomorphism. �
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Problem 3. Let ω be the n-form on Rn+1 \ {~0} defined by:

ω =
1

|~x|n+1

n+1∑
i=1

(−1)ixidx
1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

where ~x = (x1, . . . , xn+1) and |~x| =
√
x2

1 + · · ·+ x2
n+1.

(a) Show that ω is closed.

Solution. By direct computation, we have

dω =
n∑
i=1

(−1)i−1

(
n+1∑
j=1

∂

∂xj
xi
|~x|n+1

)
dxj ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

=
n∑
i=1

(−1)i−1

(
∂

∂xi
xi
|~x|n+1

)
dxi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

=
n∑
i=1

(
1

|~x|n+1
− n+ 1

2
· 2x2

i

|~x|n+3

)
dx1 ∧ · · · ∧ dxi−1 ∧ dxi ∧ dxi+1 ∧ · · · ∧ dxn+1

=

[
n∑
i=1

1

|~x|n+1
− n+ 1

|~x|n+3

n∑
i=1

x2
i

]
dx1 ∧ · · · ∧ dxn

=

(
n+ 1

|~x|n+1
− (n+ 1)|~x|2

|~x|n+3

)
dx1 ∧ · · · ∧ dxn

= 0

Hence by definition, ω is closed. �

(b) Let Sn = {~x ∈ Rn+1 : |~x| = 1}. Given a smooth function f : Sn → (0,∞) and denote

Σf := {f(~x)~x : ~x ∈ Sn}

i. Show that Σf is an n-submanifold of Rn+1 \ {~0}.
Solution. (1) Since f(~x) 6= 0 for all ~x ∈ Sn, thus ~0 /∈ Σf and so Σf is a subset of
Rn+1 \ {~0}.

(2) Let ~x ∈ Sn and let F (u1, . . . , un) : UF → OF be a local parametrization around ~x.
Define F̃ : UF → VF by

F̃ (u1, . . . , un) := f
(
F (u1, . . . , un)

)
F (u1, . . . , un)

where VF := {f(~x)~x : ~x ∈ OF}. The F̃ is a local parametrization around f(~x)~x on
Σf .

Let G(v1, . . . , vn) be another local parametrization around ~x and let G̃ be the similarly
induced local parametrization around f(~x)~x on Σf . Consider the transition map

(v1, . . . , vn) = G̃−1 ◦ F̃ (u1, . . . , un)
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Then we have G̃(v1, . . . , vn) = F̃ (u1, . . . , un), i.e.

f
(
G(v1, . . . , vn)

)
G(v1, . . . , vn) = f

(
F (u1, . . . , un)

)
F (u1, . . . , un) (2)

Since F (u1, . . . , un), G(v1, . . . , vn) ∈ Sn, thus by taking norm of both sides, and using
the fact that f > 0, we obtain

f
(
G(v1, . . . , vn)

)
= f

(
F (u1, . . . , un)

)
Substitute this back into (2), we see that G(v1, . . . , vn) = F (u1, . . . , un). Thus

G̃−1 ◦ F̃ (u1, . . . , un) = G−1 ◦ F (u1, . . . , un)

is smooth. Hence by definition, Σf is a smooth n-manifold.

(3) Denote ιf : Σf → Rn+1 \ {~0} the inclusion map. Then we have

ιf ◦ F̃ (u1, . . . , un) = f
(
F (u1, . . . , un)

)
F (u1, . . . , un)

By the product rule, we have

∂ιf
∂ui

=
∂(f ◦ F )

∂ui
F (u1, . . . , un) + (f ◦ F )(u1, . . . , un)

∂F

∂ui

Here , since F (u1, . . . , un) ∈ Rn+1, it makes sense to speak of ∂F
∂ui

and it is tangent to
Sn. Thus, we identify ∂F

∂ui
as the tangent vector ∂

∂ui
, as in the case of regular surface.

Taking B =
{
∂F
∂u1
, . . . , ∂F

∂un
, F
}

as a basis for Tf(~x)~x(Rn+1 \ {~0}) ' Rn+1, we see that

[
∂ιf
∂ui

]
B

=

(
0 · · · f ◦ F · · · 0

∂(f ◦ F )

∂ui

)T
where f ◦ F is at the i-th position. Now, since the matrix

f ◦ F 0 · · · 0
0 f ◦ F · · · 0
...
0 0 · · · f ◦ F

∂(f◦F )
∂u1

∂(f◦F )
∂u2

· · · ∂(f◦F )
∂un

 =

 (f ◦ F )In

∇(f ◦ F )



has full rank (because f 6= 0), this shows that the vectors ∂ιf
∂ui

are linearly independent.
Thus, [ιf∗] has full rank. Therefore, ιf is an immersion.

Hence by definition, Σf is a submanifold of Rn+1 \ {~0}. �

6



ii. Denote ιf : Σf → Rn+1 \ {~0} the inclusion map. Show that the absolute value of∣∣∣∣∣
∫

Σf

ι∗fω

∣∣∣∣∣ is independent of the function f : Sn → (0,∞).

Solution. We need to show that for any smooth functions f, g : Sn → (0.∞), we have∣∣∣∣∣
∫

Σf

ι∗fω

∣∣∣∣∣ =

∣∣∣∣∣
∫

Σg

ι∗gω

∣∣∣∣∣ (3)

Since f, g are continuous and Sn is compact, both of them achieve a positive minimum
on Sn. Thus, there is an r > 0 such that f, g > r on Sn. Denote Sn(r) the sphere of
radius r centered at ~0, and denote ιr : Sn(r)→ Rn+1 \ {~0} the inclusion map.

Let Mf be the closed region bounded between Σf and Sn(r). Then Mf is a compact
orientable smooth (n+ 1)-manifold with boundary

∂M = Σf t Sn(r)

This can be checked easily and we omit the details. Now, since by (a), ω is closed,
thus by the generalized Stokes’ Theorem,

0 =

∫
M

dω =

∫
∂M

ω = εf

∫
Σf

ι∗fω + εr

∫
Sn(r)

ι∗rω

where εf , εr ∈ {±1} depends on the chosen orientation. Thus,

εf

∫
Σf

ι∗fω = −εr
∫
Sn(r)

ι∗rω

Taking absolute value, we obtain∣∣∣∣∣
∫

Σf

ι∗fω

∣∣∣∣∣ =

∣∣∣∣∫
Sn(r)

ι∗rω

∣∣∣∣ (4)

Now do the same for g; namely, consider Mg the closed region bounded between Σg

and Sn(r). By the same argument, we also have∣∣∣∣∣
∫

Σg

ι∗gω

∣∣∣∣∣ =

∣∣∣∣∫
Sn(r)

ι∗rω

∣∣∣∣ (5)

Combining (4) and (5) proves the desired equality (3). �
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iii. Find the value of the above integral. (Hint: It may be difficult to compute it directly,
but you may pick a particular nice function f , and also find a nicer n-form η on Rn+1

such that ι∗fω = ι∗fη, then find the integral of ι∗fη over Σf ).

Solution. Note that the result of part ii also tells us that∣∣∣∣∣
∫

Σf

ι∗fω

∣∣∣∣∣ =

∣∣∣∣∫
Sn(r)

ι∗rω

∣∣∣∣ =

∣∣∣∣∫
Sn
ι∗ω

∣∣∣∣
where ι∗ : Sn → Rn+1 \ {~0} denotes the inclusion map. Thus it suffices to compute
the rightmost term.

Following the hint, we consider

η =
n+1∑
i=1

(−1)ixidx
1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

Clearly, η is a smooth n-form defined on the whole Rn+1. Moreover, since every point
~x on Sn satisfies |~x| = 1, thus ι∗fω = ι∗fη. Finally, by direct computation, we have

dη = (n+ 1)dx1 ∧ · · · ∧ dxn+1

Therefore by the generalized Stokes’ theorem again,∫
Sn
ι∗ω =

∫
Sn
ι∗η

=

∫
∂Bn+1

η

=

∫
Bn+1

dη

=

∫
Bn+1

(n+ 1)dx1 ∧ · · · ∧ dxn+1

= (n+ 1)

∫
Bn+1

dx1 · · · dxn

= (n+ 1)Vol(Bn+1)

where Bn+1 is the closed unit ball in Rn+1. Hence we conclude that∣∣∣∣∣
∫

Σf

ι∗fω

∣∣∣∣∣ = (n+ 1)Vol(Bn+1).

�
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