Problem Set #3

MATH 4033, Calculus on Manifold, Spring 2019

Problem 1. (a) Show that any complex manifold (i.e. transition maps are holomorphic) must
be orientable.

Solution. Let F'(zq,..., %0, Y1, ..., Yn) and G(uq, . .., Uy, V1, ..., v, ) be local parametriza-
tions on a complex manifold M. Since the transition map

(Ul ey Upy Ve ey V) :G_loF(xl,...,xn,yl,...,yn)

is holomorphic, the Cauchy-Riemann equations must be satisfied: V1 < 1,5 < n,

811,1- 81}1- 8vz~ 6uz
= and =

Ox; Oy oy dy,

Thus the Jacobian of the transition map is given by the block matrix:

To compute its determinant we will need a formula from linear algebra to compute the
determinant of block matrices of the form

A B
-B A
This is achieved by using the relation

A B\ _1(I I\ (A+iB I —il
-B A) "2\l —il A—iB)\I il

Here I = I, is the n X n identity matrix, while 7 = /—1. Note that

I 1\ 11 i
il —iI) T2\l il

A B\ A+iB
det(_B A)—det( A—iB)

= det(A + iB) det(A — iB)
= det(A + iB) det(A +iB)
= det(A+iB)det(A+iB) >0

Therefore,



(b)

Since det D(G™! o F) # 0, thus it must follow that

det D(G™' o F) = det

Hence by definition, M is orientable. OJ

A smooth manifold M?" is called a symplectic manifold if there exists a smooth 2-form w
such that dw = 0 and the only vector field X such that txw = 0 is the zero vector field.
Show that any symplectic manifold must be orientable.

Solution. Consider the 2n-form

Q=wA---ANw

n times

We will show that €2 is a non-vanishing form on M. By Proposition 4.25, this will imply
that M is orientable.

Let p € M. Let (uq, ..., u,) be local coordinates around p. Then we can write

n
Wy = Z wij(p)du’ A du?
ij=1

Since w is a differential form, it is alternating, thus the matrix [w;;(p)] is a real skew-
symmetric matrix. Moreover, the assumption “if txw = 0, then X = 07 implies that
the linear map X, — (1xw), is injective (hence bijective since T,M and Ty M have the
same finite dimension). Thus, |w;;(p)] is an invertible matrix. Therefore, by results in linear
algebra, [w;;(p)] can be decomposed into

A

[wij(p)] = Q QT
And

—1
of [w;j(p)]. Consequently, there exists a basis {e} }>", for T M such that

1=

where () is orthogonal, J = < 1) ,and \; > 0 such that +);1/—1 are the eigenvalues

n
. * *
Wp = E Ak€ai_1 N\ Egp
k=1

which implies that
Q,=wpy N Awp=nl(Ar---A)ef A---Nej, #0

since Ay --- A, > 0. Since €, # 0 is true for any p € M, we conclude that €2 is a non-
vanishing 2n-form on M. This completes the proof. 0



Problem 2. Let M" be a smooth manifold. For each p € M covered by local coordinates
(uq,...,u,), we denote

AT M := span {du1|p Ao A du”|p} :

Denote the n-form bundle of M by A"T*M := U {p} x A" M.

pEM

(a) Show that the n-form bundle of M is a smooth manifold. What is its dimension?

Solution. Denote the local parametrization around p by F'(uy,...,u,) : Ur — Op. Define

F:lUp xR — 7 HOF)

.....

where 7w : A"T*M — M is the projection (p,w,) +— p, and for convenience, we denote

dut A - Adu™)| = du'| A---Adu™| . Then F is alocal parametrization on AT M.
p p p

Let G(v1,...,v,) : Us — Og be another local parametrization around p, and let G be the
similarly induced local parametrization on A" ). We consider the transition maps:

(U1, ... n,b) =G Lo Fluy, ..., Uy, a)
Then we have G(vy, . .., vn, b) = F(ul, ..., Up, a), and so by definition of F,G, we have

Gvy, .. vp) = F(ug, ..., uy)
b(dv' A -+ A dv™ =a(du* A -+ A du™)

Fron these we also see that

O(u, ..., uy,)
1 n — g b AL n
b(dv* A+ ANdv )’G(Ul 77777 ”n)_aﬁ(m,...,vn) (v’ A Ado )}G(vl ..... n)
b=adet D(F'oG)
a

det D(G='o F)

since det D(G™' o F') # 0 on V := Ur N Ug. Therefore,

~ ~ a
G_loF(ul,...,un,a) = (G_IOF(Uly--'aun)adetD(G1OF))

Since M is a smooth manifold, thus G~! o I is smooth. The last component is a rational
function on V, thus it is also smooth. Hence, G~' o F.

Hence by definition, A™1™ M is a smooth manifold of dimension dim A"T*M =n + 1. U



(b) Show that if M™ is orientable, then A"7T™ M is diffeomorphic to M x R.

Solution. By Proposition 4.25 in lecture notes, it follows that there exists a non-vanishing
smooth n-form (2 globally defined on M. Then for each p € M, (2, is nonzero. Since
/\"T;M is 1-dimensional, thus

ATy M = span {2, } (1
Define ® : M x R — A"T™*M by
O(p, A) == (p, A2p)

Since €2 is non-vanishing, this map @ is injective. Indeed, if (p, A2,,) = (¢, p2,), thenp = ¢
and \(2, = 12, implies that A\ = p (since €2, # 0). Finally, as an immediate consequence
of (1), ® is also surjective. Hence, ® is a bijection.

Letp € M. Let F(uy,...,u,) : U — O be a local parametrization around p, and let F be
the induced local parametrization on A"7™ M defined in part (a). Consider

(U1, ... vp,a) = F Lo®o (F xid)(uy,. .., up,\)

-----

On O, we may write
Q= fdu' A+ Adu™
for some locally defined f € C*°(O). Then it follows that
a=N(F(uy,...,up))
and so
F_lo<I>o(F X 1d)(ug, ..oy Upy, A) = (ul,...7un,)\(foF)(u1,...,un))

Since f is smooth on O, thus f o F' is smooth on I/, therefore F'~' o ® o (F x id). is smooth.
Hence, ® is smooth.

Finally, since € is non-vanishing, thus f is also non-vanishing on /. Consequently we have

(Fxid) " o® " o F(vy,...,v,,a) = (”17""“”’ (foF)(a ,vn))

Uiy ...

and so &~ is also smooth.

Hence by definition, ® is a diffeomorphism. U



Problem 3. Let w be the n-form on R"t!\ {0} defined by:

n+1

1 | 3 |
“ |zt Z<_1)1Iz’dxl A ANda TP AdTTEA A da T
1=1
where 7 = (21, ..., %,11) and |Z| = /2] +

(a) Show that w is closed.

Solution. By direct computation, we have

n n+1
dw = Z(—UH (Z 0 ) da? Ade' A Ade T A d A - A da

— oxi |f|n+1

—Z ( x—)dm Adzt A AdrTEAdasTEA A dae

D | T+

" 1 222 ~ o
:Z( _ntl e )d:(:l/w'-/\dxl1/\dx’/\dx”l/\'--/\dx"Jrl

— |:Z=’|n+1 2 |f’n+3

- n-+1
[Z |x’n+1 B |f|n+3 Zx ] dz' Ao A da”

(n—i—l n+1)|x|2
0

)d:cl/\~~~/\dx"

‘x|n+1 o ’f|n+3

Hence by definition, w is closed.
(b) LetS" = {7 € R""! : |¥] = 1}. Given a smooth function f : S — (0, c0) and denote
Yp={f(2)d:7eS"}

i. Show that X is an n-submanifold of R"'\ {0}.

Solution. (1) Since f(¥) # 0 for all ¥ € S", thus 0 ¢ X and so Xy is a subset of
RTH—l \ {0}

(2) Let Z € S™ and let F'(uq, ..., u,) : Up — Op be a local parametrization around Z.

DeﬁneF:L{F — Vr by
Fluy, ... u,) = f(F(ug, ... un))Flu, ..., un)

where Vi := {f(#)Z: £ € Op}. The F is a local parametrization around f()Z on
.
Let G(vy, ..., v,) be another local parametrization around Z and let G be the similarly

induced local parametrization around f(Z)# on X . Consider the transition map

(V1,...,00) = G Lo Fluy, ..., up,)



Then we have G (vy, ..., v,) = F(uy, ..., u,), ie.

f(G(vl, . ,vn))G(vl, CeyUp) = f(F(ul, . ,un))F(ul, C Uy) 2)

Since F'(uq, ..., uy,),G(vy,...,v,) € S™, thus by taking norm of both sides, and using
the fact that f > 0, we obtain

F(G(vr, ... vn) = F(Flu, ... u))
Substitute this back into (2), we see that G(vy,...,v,) = F(uy,...,u,). Thus
Gt oﬁ’(ul,...,un) =G o F(uy,...,uy,)
is smooth. Hence by definition, >/ is a smooth n-manifold.
(3) Denote ¢; : ¥y — R"+1\ {0} the inclusion map. Then we have

Lfof?’(ul,...,un) :f(F(ul,...,un))F(ul,...,un)

By the product rule, we have

Oy O(foF) oF
—t = F ce, Up F ey Uy
o = e F () + (f 0 F) ) o
Here , since F'(uy,...,u,) € R™*! it makes sense to speak of % and it is tangent to

S™. Thus, we identify % as the tangent vector %, as in the case of regular surface.

Taking B = {a—F . 2E F} as a basis for T'p(zz(R" ™\ {0}) ~ R"*!, we see that

Ouy’ ) Oup?
Ol _ (g foF o oMY
ﬁui B n 8u1
where f o F'is at the i-th position. Now, since the matrix

foF 0 e 0

0 foF .- 0

. _ (f o F)In

0 0 v foF
OUOF) OfoF) . DfoF) V(foF)

ouq Ous Oun

has full rank (because f # 0), this shows that the vectors % are linearly independent.
Thus, [¢f.] has full rank. Therefore, ¢ is an immersion.

Hence by definition, ¥ is a submanifold of R"+1\ {0}. O



ii. Denote ¢f : ¥y — R™1\ {0} the inclusion map. Show that the absolute value of

/ tjw| is independent of the function f : S" — (0, 00).
Xf

Solution. We need to show that for any smooth functions f, g : S* — (0.00), we have

/ L}w / LZw
b Sy

Since f, g are continuous and S™ is compact, both of them achieve a positive minimum
on S". Thus, there is an > 0 such that f,g > r on S™. Denote S™(r) the sphere of
radius r centered at 0, and denote ¢, : S"(r) — R™"!\ {0} the inclusion map.

3)

Let M be the closed region bounded between X and S"(r). Then M is a compact
orientable smooth (n + 1)-manifold with boundary

8M = ZfUSn(T)

This can be checked easily and we omit the details. Now, since by (a), w is closed,
thus by the generalized Stokes” Theorem,

Oz/dw:/ wzaf/ L}w—i—er/ Lrw
M oM Xy Sn(r)

where ¢, ¢, € {£1} depends on the chosen orientation. Thus,

5f/ Lpw = —er/ Lrw
Ef S"(’I‘)

Taking absolute value, we obtain
/ Lrw
§7(r)

/ Lpw
2y

Now do the same for g; namely, consider M, the closed region bounded between X,
and S™(r). By the same argument, we also have

/ LyW / Lrw
g §n(r)

Combining (4) and (5) proves the desired equality (3). U

“)

&)




iii. Find the value of the above integral. (Hint: It may be difficult to compute it directly,
but you may pick a particular nice function f, and also find a nicer n-form 1 on R"*!
such that t3w = (7, then find the integral of %7 over Xy).

Solution. Note that the result of part ii also tells us that

* * *
/ Lyw / LW / Uw
Ef S"(T) n

where /* : S* — R™1\ {0} denotes the inclusion map. Thus it suffices to compute
the rightmost term.

Following the hint, we consider

n+1
n= Z(—l)ixidacl A ANdeTPAd T A A da™ T
i=1

Clearly, 1) is a smooth n-form defined on the whole R"*!. Moreover, since every point
7 on S" satisfies |7] = 1, thus tjw = ¢}7. Finally, by direct computation, we have

dn=(n+1)da* A--- Ada"™

Therefore by the generalized Stokes’ theorem again,

/ Ufw = / L*n

N n
aBn+1
Bn+1

:/ (n+dz' A--- Ada™t?
Bt
:(n+1)/ d' - dz"
Bn+1
= (n+ 1)Vol(B™1)

where B™! is the closed unit ball in R”*!. Hence we conclude that

/ L}w
2y

= (n+ 1)Vol(B™1).




