MATH 4033 • Spring 2019 • Calculus on Manifolds

Problem Set #4 • Stokes' Theorem / Quotient Spaces • Due Date: 12/05/2019, 11:59PM

- 1. (a) Show that any complex manifold (i.e. transition maps are holomorphic) must be orientable. [Note: Please fix my calculation of determinant in class.]
 - (b) A smooth manifold M^{2n} is called a symplectic manifold if there exists a smooth 2-form ω such that $d\omega = 0$, and for any $p \in M$, the only vector $X_p \in T_pM$ such that $i_{X_p}\omega_p = 0$ is the zero vector. Show that any symplectic manifold must be orientable.
- 2. Let M^n be a smooth manifold. For each $p \in M$ covered by local coordinates (u_1, \dots, u_n) , we denote

$$\wedge^n T_p^* M := \operatorname{span}\{du^1|_p \wedge \cdots \wedge du^n|_p\}.$$

Denote the *n*-form bundle of M by $\wedge^n T^*M := \bigcup_{p \in M} \{p\} \times \wedge^n T_p^*M$.

- (a) Show that the n-form bundle of M is a smooth manifold. What is its dimension?
- (b) Show that if M^n is orientable, then $\wedge^n T^*M$ is diffeomorphic to $M \times \mathbb{R}$.
- 3. Let ω be the *n*-form on $\mathbb{R}^{n+1} \setminus \{\vec{0}\}$ defined by:

$$\omega = \frac{1}{|\vec{x}|^{n+1}} \sum_{i=1}^{n+1} (-1)^{i-1} x_i \, dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^{n+1}$$

where $\vec{x} = (x_1, \dots, x_{n+1})$ and $|\vec{x}| = \sqrt{x_1^2 + \dots + x_{n+1}^2}$.

- (a) Show that ω is closed.
- (b) Let $\mathbb{S}^n = \{ \vec{x} \in \mathbb{R}^{n+1} : |\vec{x}| = 1 \}$. Given a smooth function $f : \mathbb{S}^n \to (0, \infty)$ and denote

$$\Sigma_f := \{ f(\vec{x})\vec{x} : \vec{x} \in \mathbb{S}^n \}$$

- i. Show that Σ_f is an *n*-submanifold of $\mathbb{R}^{n+1} \setminus \{\vec{0}\}$.
- ii. Denote $\iota_f : \Sigma_f \to \mathbb{R}^{n+1} \setminus \{\vec{0}\}$ the inclusion map. Show that the absolute value of integral $\left| \int_{\Sigma_f} \iota_f^* \omega \right|$ is independent of the function $f : \mathbb{S}^n \to (0, \infty)$.
- iii. Find the value of the above integral. (Hint: It may be difficult to compute it directly, but you may pick a particular nice function f, and also find a nicer n-form η on \mathbb{R}^{n+1} such that $\iota_f^* \omega = \iota_f^* \eta$, then find the integral of $\iota_f^* \eta$ over Σ_f).
- 4. Exercises 5.1 and 5.2
- 5. [Source: HKALE¹ Year 1991, Pure Mathematics Paper 1 Q13]

Let $u \in \mathbb{R}^3$ be a unit vector. A relation \sim on \mathbb{R}^3 is defined by:

 $v \sim w$ if and only if v - w = ku for some $k \in \mathbb{R}$.

- (a) Show that \sim is an equivalence relation.
- (b) Denote by [v] the equivalence class containing v. Let $f : \mathbb{R}^3 / \sim \to \mathbb{R}^3$ be defined by $f([v]) = v (v \cdot u)u$.
 - i. Show that f is well-defined and injective.
 - ii. For any non-zero $w \in \mathbb{R}^3$, show that w is perpendicular to u if and only if w is in the image of f. Hence deduce that f is not surjective.
- (c) Now given that u = (0, 0, 1) and v = (0, 1, 2), describe (or sketch) the set [v].

¹HKALE was known as the Hong Kong Advanced-Level Examination. It is the former local university entrance exam before 2012.