Problem Set \#1

MATH 4033, Calculus on Manifold, Spring 2019

Problem 2. Consider a regular surface Σ in \mathbb{R}^{3}. Denote $\nu: \Sigma \rightarrow \mathbb{R}^{3}$ be a smooth map of unit normal vectors to Σ. Let $f: \Sigma \rightarrow(0, \infty)$ be a C^{∞} function on Σ, and consider the set:

$$
\hat{\Sigma}:=\{p+f(p) \nu(p): p \in \Sigma\}
$$

(a) Suppose $F\left(u_{1}, u_{2}\right)$ is a C^{∞} local parametrization of Σ.
i. Show that $\frac{\partial \nu}{\partial u_{i}}(p) \in T_{p} \Sigma$.

Solution. By definition, $\nu(p)$ is of unit length for any $p \in \Sigma$; that is,

$$
\langle\nu(p), \nu(p)\rangle=1
$$

Differentiating both sides with respect to u_{i} using the product rule, we obtain

$$
\begin{array}{rlrl}
\left\langle\frac{\partial \nu}{\partial u_{i}}(p), \nu(p)\right\rangle+\left\langle\nu(p), \frac{\partial \nu}{\partial u_{i}}(p)\right\rangle & =0 \\
\therefore & & \left\langle\frac{\partial \nu}{\partial u_{i}}(p), \nu(p)\right\rangle & =0
\end{array}
$$

Thus $\frac{\partial \nu}{\partial u_{i}}(p)$ is orthogonal to the normal vector $\nu(p)$ at p. Hence, $\frac{\partial \nu}{\partial u_{i}}(p)$ is in the tangent plane $T_{p} \Sigma$.
ii. Consider the linear map $h: T_{p} \Sigma \rightarrow T_{p} \Sigma$ defined by:

$$
h\left(\frac{\partial F}{\partial u_{i}}\right):=\frac{\partial \nu}{\partial u_{i}}
$$

and extends linearly to all of $T_{p} \Sigma$. Show that h is self-adjoint with respect to the standard dot product, i.e.

$$
\langle h(X), Y\rangle=\langle X, h(Y)\rangle \quad \text { for any } X, Y \in T_{p} \Sigma .
$$

Solution. It suffices to show that the equality holds for the basis vectors $\frac{\partial F}{\partial u_{i}}(p)$, since h is linear and the inner product is bilinear.

Since ν is orthogonal to the tangent vectors, i.e.

$$
\left\langle\nu, \frac{\partial F}{\partial u_{i}}\right\rangle=0
$$

for any i, thus we have

$$
\frac{\partial}{\partial u_{i}}\left\langle\nu, \frac{\partial F}{\partial u_{j}}\right\rangle=0=\frac{\partial}{\partial u_{j}}\left\langle\nu, \frac{\partial F}{\partial u_{i}}\right\rangle
$$

for any i, j. Expanding both sides and using the definition of h, we have

$$
\begin{aligned}
\left\langle\frac{\partial \nu}{\partial u_{i}}, \frac{\partial F}{\partial u_{j}}\right\rangle+\left\langle\nu, \frac{\partial^{2} F}{\partial u_{i} \partial u_{j}}\right\rangle & =\left\langle\frac{\partial \nu}{\partial u_{j}}, \frac{\partial F}{\partial u_{i}}\right\rangle+\left\langle\nu, \frac{\partial^{2} F}{\partial u_{j} \partial u_{i}}\right\rangle \\
\therefore \quad\left\langle h\left(\frac{\partial F}{\partial u_{i}}\right), \frac{\partial F}{\partial u_{j}}\right\rangle & =\left\langle\frac{\partial F}{\partial u_{i}}, h\left(\frac{\partial \nu}{\partial u_{j}}\right)\right\rangle
\end{aligned}
$$

Thus the equality holds for the basis tangent vectors. By linearity, it holds for every $X, Y \in T_{p} \Sigma$. Hence h is self-adjoint.
(b) From (a), we denote $h\left(\frac{\partial F}{\partial u_{i}}\right)=\sum_{j} h_{i}^{j} \frac{\partial F}{\partial u_{j}}$. Consider the map \hat{F} defined on the same domain as F :

$$
\hat{F}\left(u_{1}, u_{2}\right):=F\left(u_{1}, u_{2}\right)+f\left(F\left(u_{1}, u_{2}\right)\right) \nu\left(F\left(u_{1}, u_{2}\right)\right) .
$$

Suppose \hat{F} is a homeomorphism onto its image. Show that if the linear map:

$$
\mathrm{id}+f h: T_{p} \Sigma \rightarrow T_{p} \Sigma
$$

is invertible for any $p \in \Sigma$, then \hat{F} is a C^{∞} local parametrization of $\hat{\Sigma}$.

Solution. Condition (1): Since f, F, ν are all smooth by assumption, thus $f \circ F$ and $\nu \circ F$ are smooth. Hence $\hat{F}=F+(f \circ F)(\nu \circ F)$ is smooth.

Condition (2): By assumption, \hat{F} is already a homeomorphism onto its image.
Condition (3): We compute that:

$$
\frac{\partial \hat{F}}{\partial u_{i}}=\frac{\partial F}{\partial u_{i}}+\frac{\partial(f \circ F)}{\partial u_{i}} \nu\left(u_{1}, u_{2}\right)+f\left(F\left(u_{1}, u_{2}\right)\right) \frac{\partial \nu}{\partial u_{i}}
$$

for any i. Using the definition of h, we can further write

$$
\begin{aligned}
\frac{\partial \hat{F}}{\partial u_{i}} & =\mathrm{id}\left(\frac{\partial F}{\partial u_{i}}\right)+\frac{\partial(f \circ F)}{\partial u_{i}} \nu\left(u_{1}, u_{2}\right)+f\left(F\left(u_{1}, u_{2}\right)\right) h\left(\frac{\partial F}{\partial u_{i}}\right) \\
& =\underbrace{(\mathrm{id}+f h)\left(\frac{\partial F}{\partial u_{i}}\right)}_{\text {call this } X_{i}}+\frac{\partial(f \circ F)}{\partial u_{i}} \nu \\
& =X_{i}+\frac{\partial f}{\partial u_{i}} \nu
\end{aligned}
$$

for any i. Thus

$$
\begin{aligned}
\frac{\partial \hat{F}}{\partial u_{1}} \times \frac{\partial \hat{F}}{\partial u_{2}} & =X_{1} \times X_{2}+\frac{\partial f}{\partial u_{2}} X_{1} \times \nu+\frac{\partial f}{\partial u_{1}} \nu \times X_{2}+\frac{\partial f}{\partial u_{1}} \frac{\partial f}{\partial u_{2}} \underbrace{\nu \times \nu}_{=0} \\
& =X_{1} \times X_{2}+\frac{\partial f}{\partial u_{2}} X_{1} \times \nu+\frac{\partial f}{\partial u_{1}} \nu \times X_{2}
\end{aligned}
$$

Note that since F is a smooth local parametrization, thus $\frac{\partial F}{\partial u_{i}}$ and $\frac{\partial F}{\partial u_{2}}$ are linearly independent. Now, if the linear map id $+f h$ is invertible, by linear algebra it must map linearly independent vectors to linearly independent vectors. Thus, X_{1} and X_{2} are linear independent, therefore the cross product $X_{1} \times X_{2}$ is nonzero. Since it is parallel to ν, we have $\nu \cdot\left(X_{1} \times X_{2}\right) \neq 0$.

On the other hand, $\nu \cdot\left(X_{1} \times \nu\right)=\nu \cdot\left(\nu \times X_{2}\right)=0$. Thus

$$
\nu \cdot\left(\frac{\partial \hat{F}}{\partial u_{1}} \times \frac{\partial \hat{F}}{\partial u_{2}}\right)=\nu \cdot\left(X_{1} \times X_{2}\right) \neq 0
$$

Therefore it must follow that $\frac{\partial \hat{F}}{\partial u_{1}} \times \frac{\partial \hat{F}}{\partial u_{2}} \neq 0$. Hence condition (3) is satisfied.
Hence by definition, \hat{F} is a smooth local parametrization of $\hat{\Sigma}$.

