MATH 4033 • Spring 2019 • Calculus on Manifolds

 Problem Set \#3 - Tensors and Differential Forms • Due Date: 31/03/2019, 11:59PM1. (10 points) Let M^{n} be a $C^{\infty} n$-dimensional manifold. For each $p \in M$, we define the $(1,1)$-tensor space at p by:

$$
T_{p}^{1,1} M:=T_{p}^{*} M \otimes T_{p} M=\operatorname{span}\left\{\left.d u^{i}\right|_{p} \otimes \frac{\partial}{\partial u_{j}}(p)\right\}_{i, j=1}^{n},
$$

and similar to tangent and cotangent bundles, we define the (1,1)-tensor bundle of M by:

$$
T^{1,1} M:=\bigcup_{p \in M}\{p\} \times T_{p}^{1,1} M
$$

(a) Show that $T^{1,1} M$ is a C^{∞} manifold. What is $\operatorname{dim} T^{1,1} M$?
(b) Show that if $n=1$, then $T^{1,1} M$ is diffeomorphic to $M \times \mathbb{R}$.
2. (15 points) Consider the maps $\Phi_{i}: \mathbb{R} \times(0,2 \pi) \rightarrow \mathbb{R}^{3}$, where $i=1,2$, defined as:

$$
\begin{aligned}
\Phi_{1}(u, v) & =(\cosh u \cos v, \cosh u \sin v, v), \\
\Phi_{2}(r, \theta) & =(r \cos \theta, r \sin \theta, \theta) .
\end{aligned}
$$

(a) Denote $\delta=d x \otimes d x+d y \otimes d y+d z \otimes d z$, where x, y, z are the usual Cartesian coordinates on \mathbb{R}^{3}. Compute $\Phi_{i}^{*} \delta$ for each i.
(b) Show that there exists a C^{∞} map $\psi: \mathbb{R} \times(0,2 \pi) \rightarrow \mathbb{R} \times(0,2 \pi)$ such that

$$
\left(\Phi_{2} \circ \psi\right)^{*} \delta=\Phi_{1}^{*} \delta .
$$

3. (20 points) Consider the following 2-tensor and 3-form defined on $M:=\underbrace{(1, \infty)}_{s} \times \underbrace{\mathbb{S}^{2}}_{\phi, \theta}$:

$$
\begin{aligned}
& g:=\frac{s}{s^{3}+s-2} d s \otimes d s+s^{2}\left(d \phi \otimes d \phi+\sin ^{2} \phi d \theta \otimes d \theta\right) \\
& \Omega:=\left(\frac{s^{5} \sin ^{2} \phi}{s^{3}+s-2}\right)^{\frac{1}{2}} d s \wedge d \phi \wedge d \theta=\sqrt{\operatorname{det}[g]} d s \wedge d \phi \wedge d \theta
\end{aligned}
$$

Here \mathbb{S}^{2} is the unit sphere, and (ϕ, θ) are the standard spherical coordinates using math convention: $\phi \in(0, \pi)$ and $\theta \in(0,2 \pi)$.
(a) Let $X=\frac{\partial}{\partial \theta}$ and $Y=\frac{\partial}{\partial \phi}$. Compute all of the following:

$$
\mathcal{L}_{X} g, \quad \mathcal{L}_{Y} g, \quad i_{X} \Omega, \quad i_{Y} \Omega, \quad \mathcal{L}_{X} \Omega, \quad \mathcal{L}_{Y} \Omega
$$

(b) Show that there exists a local coordinate system (r, ϕ, θ) of M such that:

$$
g=d r \otimes d r+f(r)^{2}\left(d \phi \otimes d \phi+\sin ^{2} \phi d \theta \otimes d \theta\right)
$$

for some positive smooth function $f(r)$.
4. (15 points) (a) Suppose the following 1-form on \mathbb{R}^{3} is closed:

$$
\omega=p d x+q d y+r d z
$$

where $p, q, r: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are homogeneous smooth functions of of degree m. Show that $\omega=d f$ where $f=\frac{x p+y q+z r}{m+1}$, i.e. ω is exact.
(b) Suppose that the following 2-form on \mathbb{R}^{3} is closed:

$$
\Omega=P d y \wedge d z+Q d z \wedge d x+R d x \wedge d y
$$

where $P, Q, R: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are homogeneous smooth functions of degree m. Show that $\Omega=d \alpha$, where

$$
\alpha=\frac{(z Q-y R) d x+(x R-z P) d y+(y P-x Q) d z}{m+2}
$$

[FYI: In fact all smooth closed 1-forms and 2-forms on \mathbb{R}^{3} are exact, but the primitive forms are not as explicit as the above if p, q, r and P, Q, R are not homogeneous functions.
5. (15 points) Exercises 3.56 and 3.57 (about converting the four Maxwell's equations into two elegant equations using differential forms).
6. (25 points) Consider smooth manifolds M and N with the same dimension n. Suppose $\Omega \in \wedge^{n} T^{*} M$ is a $C^{\infty} n$-form on M such that $\Omega(p) \neq 0$ for any $p \in M$. Given an n dimensional submanifold Σ of $M \times N$, we denote:

- $\iota_{\Sigma}: \Sigma \rightarrow M \times N$ to be the inclusion map
- $\pi_{M}: M \times N \rightarrow M$ to be the projection map $(p, q) \in M \times N \mapsto p \in M$.
- $\pi_{N}: M \times N \rightarrow N$ to be the projection map $(p, q) \in M \times N \mapsto q \in N$.
(a) Is $\iota_{\Sigma}^{*} \pi_{M}^{*} \Omega$ a differential form on $M, N, M \times N$, or Σ ? Explain briefly your answer.
(b) Show that if $\iota_{\Sigma}^{*} \pi_{M}^{*} \Omega$ is nowhere zero and $\pi_{M} \circ \iota_{\Sigma}$ is bijective, then there exists a welldefined C^{∞} map $\Phi: M \rightarrow N$ such that $\Sigma=\{(p, \Phi(p)) \in M \times N: p \in M\}$, i.e. Σ is the graph of Φ. [Hint: You may need the inverse/implicit function theorem.]
(c) Assume the condition given in (b) so that Σ is the graph of a C^{∞} map $\Phi: M \rightarrow N$. Given a $C^{\infty} k$-form ω_{M} on M, and a $C^{\infty} k$-form ω_{N} on N, we define:

$$
\eta:=\pi_{M}^{*} \omega_{M}-\pi_{N}^{*} \omega_{N}
$$

i. Is η a differential form on $M, N, M \times N$, or Σ ? Explain briefly your answer.
ii. Show that $\iota_{\Sigma}^{*} \eta \equiv 0$ if and only if $\omega_{M} \equiv \Phi^{*} \omega_{N}$.

