MATH 4033 • Spring 2019 • Calculus on Manifolds Problem Set #3 • Tensors and Differential Forms • Due Date: 31/03/2019, 11:59PM

1. (10 points) Let M^n be a C^{∞} *n*-dimensional manifold. For each $p \in M$, we define the (1,1)-tensor space at p by:

$$T_p^{1,1}M := T_p^*M \otimes T_pM = \operatorname{span}\left\{ du^i \big|_p \otimes \frac{\partial}{\partial u_j}(p) \right\}_{i,j=1}^n,$$

and similar to tangent and cotangent bundles, we define the (1, 1)-tensor bundle of M by:

$$T^{1,1}M := \bigcup_{p \in M} \{p\} \times T_p^{1,1}M.$$

- (a) Show that $T^{1,1}M$ is a C^{∞} manifold. What is dim $T^{1,1}M$?
- (b) Show that if n = 1, then $T^{1,1}M$ is diffeomorphic to $M \times \mathbb{R}$.
- 2. (15 points) Consider the maps $\Phi_i : \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3$, where i = 1, 2, defined as:

$$\Phi_1(u, v) = (\cosh u \cos v, \cosh u \sin v, v),$$

$$\Phi_2(r, \theta) = (r \cos \theta, r \sin \theta, \theta).$$

- (a) Denote δ = dx⊗dx+dy⊗dy+dz⊗dz, where x, y, z are the usual Cartesian coordinates on ℝ³. Compute Φ^{*}_iδ for each i.
- (b) Show that there exists a C^{∞} map $\psi : \mathbb{R} \times (0, 2\pi) \to \mathbb{R} \times (0, 2\pi)$ such that

$$(\Phi_2 \circ \psi)^* \delta = \Phi_1^* \delta.$$

3. (20 points) Consider the following 2-tensor and 3-form defined on $M := \underbrace{(1,\infty)}_{s} \times \underbrace{\mathbb{S}^{2}}_{\phi,\theta}$:

$$g := \frac{s}{s^3 + s - 2} \, ds \otimes ds + s^2 (d\phi \otimes d\phi + \sin^2 \phi \, d\theta \otimes d\theta)$$
$$\Omega := \left(\frac{s^5 \sin^2 \phi}{s^3 + s - 2}\right)^{\frac{1}{2}} \, ds \wedge d\phi \wedge d\theta = \sqrt{\det[g]} \, ds \wedge d\phi \wedge d\theta$$

Here \mathbb{S}^2 is the unit sphere, and (ϕ, θ) are the standard spherical coordinates using math convention: $\phi \in (0, \pi)$ and $\theta \in (0, 2\pi)$.

(a) Let $X = \frac{\partial}{\partial \theta}$ and $Y = \frac{\partial}{\partial \phi}$. Compute all of the following:

$$\mathcal{L}_X g, \ \mathcal{L}_Y g, \ i_X \Omega, \ i_Y \Omega, \ \mathcal{L}_X \Omega, \ \mathcal{L}_Y \Omega.$$

(b) Show that there *exists* a local coordinate system (r, ϕ, θ) of M such that:

$$g = dr \otimes dr + f(r)^2 (d\phi \otimes d\phi + \sin^2 \phi \, d\theta \otimes d\theta)$$

for some positive smooth function f(r).

4. (15 points) (a) Suppose the following 1-form on \mathbb{R}^3 is closed:

$$\omega = pdx + qdy + rdz$$

where $p, q, r : \mathbb{R}^3 \to \mathbb{R}$ are homogeneous smooth functions of of degree m. Show that $\omega = df$ where $f = \frac{xp + yq + zr}{m+1}$, i.e. ω is exact.

(b) Suppose that the following 2-form on \mathbb{R}^3 is closed:

$$\Omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

where $P, Q, R : \mathbb{R}^3 \to \mathbb{R}$ are homogeneous smooth functions of degree m. Show that $\Omega = d\alpha$, where

$$\alpha = \frac{(zQ - yR)dx + (xR - zP)dy + (yP - xQ)dz}{m+2}.$$

[FYI: In fact all smooth closed 1-forms and 2-forms on \mathbb{R}^3 are exact, but the primitive forms are not as explicit as the above if p, q, r and P, Q, R are not homogeneous functions.

- 5. (15 points) Exercises 3.56 and 3.57 (about converting the four Maxwell's equations into two elegant equations using differential forms).
- 6. (25 points) Consider smooth manifolds M and N with the same dimension n. Suppose $\Omega \in \wedge^n T^*M$ is a C^{∞} *n*-form on M such that $\Omega(p) \neq 0$ for any $p \in M$. Given an *n*-dimensional submanifold Σ of $M \times N$, we denote:
 - $\iota_{\Sigma}: \Sigma \to M \times N$ to be the inclusion map
 - $\pi_M: M \times N \to M$ to be the projection map $(p,q) \in M \times N \mapsto p \in M$.
 - $\pi_N: M \times N \to N$ to be the projection map $(p,q) \in M \times N \mapsto q \in N$.
 - (a) Is $\iota_{\Sigma}^* \pi_M^* \Omega$ a differential form on M, N, $M \times N$, or Σ ? Explain briefly your answer.
 - (b) Show that if $\iota_{\Sigma}^{*}\pi_{M}^{*}\Omega$ is nowhere zero and $\pi_{M} \circ \iota_{\Sigma}$ is bijective, then there exists a welldefined C^{∞} map $\Phi: M \to N$ such that $\Sigma = \{(p, \Phi(p)) \in M \times N : p \in M\}$, i.e. Σ is the graph of Φ . [Hint: You may need the inverse/implicit function theorem.]
 - (c) Assume the condition given in (b) so that Σ is the graph of a C^{∞} map $\Phi : M \to N$. Given a C^{∞} k-form ω_M on M, and a C^{∞} k-form ω_N on N, we define:

$$\eta := \pi_M^* \omega_M - \pi_N^* \omega_N.$$

- i. Is η a differential form on M, N, $M \times N$, or Σ ? Explain briefly your answer.
- ii. Show that $\iota_{\Sigma}^* \eta \equiv 0$ if and only if $\omega_M \equiv \Phi^* \omega_N$.