MATH 4033 • Spring 2019 • Calculus on Manifolds

Problem Set \#2 • Abstract Manifolds • Due Date: 10/03/2019, 11:59PM

1. (30 points) Let Σ be a regular surface in \mathbb{R}^{3} such that $(0,0,0) \notin \Sigma$. For each $p \in \Sigma$, define $N_{p} \Sigma$ to be the 1-dimensional vector space spanned by a non-zero normal vector to Σ at p. Consider the set:

$$
N \Sigma:=\left\{\left(p, n_{p}\right) \in\{p\} \times N_{p} \Sigma: p \in \Sigma\right\},
$$

and the following subset of $\Sigma \times \mathbb{R}^{3}$:

$$
L \Sigma:=\left\{(p, t p) \in \Sigma \times \mathbb{R}^{3}: t \in \mathbb{R}\right\} .
$$

(a) Show that $N \Sigma$ is a $C^{\infty} 3$-manifold.
(b) Show that $L \Sigma$ is a $C^{\infty} 3$-manifold, and is a submanifold of $\Sigma \times \mathbb{R}^{3}$.
(c) Suppose further that there exists a well-defined $C^{\infty} \operatorname{map} \hat{\nu}: \Sigma \rightarrow \mathbb{R}^{3}$, where $\hat{\nu}(p)$ is a unit normal vector to Σ at p. Show that $N \Sigma$ and $L \Sigma$ are diffeomorphic.
[Hint: If any non-zero vectors v, w in \mathbb{R}^{3} are parallel to each other, then $v=\frac{\langle v, w\rangle}{\|w\|^{2}} w$.]
2. (25 points) Consider $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by

$$
\Phi([x: y: z])=\frac{\left(x^{2}-y^{2}, x y, z x, y z\right)}{x^{2}+y^{2}+z^{2}} .
$$

(a) Show that Φ is well-defined, and is injective.
(b) Cover $\mathbb{R P}^{2}$ by the standard coordinate charts. Compute the local coordinate expressions of Φ respect each coordinate charts.
(c) Compute the matrix representation $\left[\Phi_{*}\right]$ with respect to each local coordinates chart of $\mathbb{R} \mathbb{P}^{2}$.
(d) Show that Φ is an immersion.
3. (20 points) The famous quintic Calabi-Yau 3-fold in string theory is the following subset in $\mathbb{C P}^{4}$:

$$
M:=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}\right] \in \mathbb{C P}^{4}: z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\right\} .
$$

Show that M is a 6 -dimensional submanifold of $\mathbb{C P}^{4}$ (which is 8 dimensional).
[Hint: First be careful that $\Phi\left(\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}\right]\right)=z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}: \mathbb{C P}^{4} \rightarrow \mathbb{C}$ is NOT well-defined! Try to show $M \cap F_{i}(\mathcal{U})$ is a submanifold of $\mathbb{C P}^{4}$ for each i where F_{i} 's are the standard local coordinate charts of $\mathbb{C P}^{4}$.]
4. (25 points) Let $p\left(x_{1}, \cdots, x_{k}\right)$ be a m-homogeneous polynomial of k variables where $k, m \geq$ 2, i.e.

$$
p\left(\lambda x_{1}, \cdots, \lambda x_{k}\right)=\lambda^{m} p\left(x_{1}, \cdots, x_{k}\right)
$$

for any $\lambda>0,\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k}$.
(a) Prove that for any $\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k}$, the following identity holds:

$$
\sum_{i=1}^{k} x_{i} \frac{\partial p}{\partial x_{i}}\left(x_{1}, \cdots, x_{k}\right)=m p\left(x_{1}, \cdots, x_{k}\right) .
$$

(b) Show that for any $a \neq 0$, the level-set $p^{-1}(a)$, whenever non-empty, is a $(k-1)$ submanifold of \mathbb{R}^{k}.
(c) Show that for any $a \neq 0$, we have $p^{-1}(a)$ is diffeomorphic to $p^{-1}(a /|a|)$ (or both are empty).

