MATH 4033 • Spring 2019 • Calculus on Manifolds Problem Set #2 • Abstract Manifolds • Due Date: 10/03/2019, 11:59PM

1. (30 points) Let Σ be a regular surface in \mathbb{R}^3 such that $(0,0,0) \notin \Sigma$. For each $p \in \Sigma$, define $N_p \Sigma$ to be the 1-dimensional vector space spanned by a non-zero normal vector to Σ at p. Consider the set:

$$N\Sigma := \{ (p, n_p) \in \{p\} \times N_p\Sigma : p \in \Sigma \},\$$

and the following subset of $\Sigma \times \mathbb{R}^3$:

$$L\Sigma := \{ (p, tp) \in \Sigma \times \mathbb{R}^3 : t \in \mathbb{R} \}.$$

- (a) Show that $N\Sigma$ is a C^{∞} 3-manifold.
- (b) Show that $L\Sigma$ is a C^{∞} 3-manifold, and is a submanifold of $\Sigma \times \mathbb{R}^3$.
- 2. (25 points) Consider $\Phi : \mathbb{RP}^2 \to \mathbb{R}^4$ be given by

$$\Phi([x:y:z]) = \frac{(x^2 - y^2, xy, zx, yz)}{x^2 + y^2 + z^2}.$$

- (a) Show that Φ is well-defined, and is injective.
- (b) Cover \mathbb{RP}^2 by the standard coordinate charts. Compute the local coordinate expressions of Φ respect each coordinate charts.
- (c) Compute the matrix representation [Φ_{*}] with respect to each local coordinates chart of ℝP².
- (d) Show that Φ is an immersion.
- 3. (20 points) The famous quintic Calabi-Yau 3-fold in string theory is the following subset in \mathbb{CP}^4 :

$$M := \left\{ [z_0 : z_1 : z_2 : z_3 : z_4] \in \mathbb{CP}^4 : z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \right\}.$$

Show that *M* is a 6-dimensional submanifold of \mathbb{CP}^4 (which is 8 dimensional).

[Hint: First be careful that $\Phi([z_0: z_1: z_2: z_3: z_4]) = z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5: \mathbb{CP}^4 \to \mathbb{C}$ is NOT well-defined! Try to show $M \cap F_i(\mathcal{U})$ is a submanifold of \mathbb{CP}^4 for each i where F_i 's are the standard local coordinate charts of \mathbb{CP}^4 .]

4. (25 points) Let $p(x_1, \dots, x_k)$ be a *m*-homogeneous polynomial of *k* variables where $k, m \ge 2$, i.e.

$$p(\lambda x_1, \cdots, \lambda x_k) = \lambda^m p(x_1, \cdots, x_k)$$

for any $\lambda > 0$, $(x_1, \cdots, x_k) \in \mathbb{R}^k$.

(a) Prove that for any $(x_1, \dots, x_k) \in \mathbb{R}^k$, the following identity holds:

$$\sum_{i=1}^{k} x_i \frac{\partial p}{\partial x_i}(x_1, \cdots, x_k) = mp(x_1, \cdots, x_k).$$

- (b) Show that for any $a \neq 0$, the level-set $p^{-1}(a)$, whenever non-empty, is a (k-1)-submanifold of \mathbb{R}^k .
- (c) Show that for any $a \neq 0$, we have $p^{-1}(a)$ is diffeomorphic to $p^{-1}(a/|a|)$ (or both are empty).