- 1. Let $\alpha > 0$ be an irrational number.
 - (a) Show that the function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ defined by $f(m, n) = m\alpha + n$ is injective.
 - (b) Define S := {mα + n : m, n ∈ Z}. Show that for any x ∈ R and ε > 0, there exist infinitely many elements s ∈ S such that |s x| < ε.
 Hint: use similar technique as in the {sin(n)}_{n=1}[∞] example. Consider the complex numbers {e^{2πi(nα-[nα])}} where n ∈ Z.
- 2. (a) Let S be a subset of \mathbb{R} such that $S \neq \mathbb{R}$ and $S \neq \emptyset$. Prove that the following are equivalent:
 - i. $\mathbb{R} \setminus S$ is open.
 - ii. Whenever $\{x_n\}$ is a sequence in S such that $x_n \to L$ as $n \to \infty$, then we have $L \in S$.
 - [Hence, we can take either one statement above as the definition of "S is closed".]
 - (b) Let $\{x_n\}$ be a bounded sequence in \mathbb{R} . Show that the limit set LIM $\{x_n\}$ is closed.
- 3. (Exercise 2.32) Consider a function $f : \mathbb{R} \to \mathbb{R}$, and given that for any $\varepsilon > 0$, the set $S_{\varepsilon} := \{x \in \mathbb{R} : |f(x)| \ge \varepsilon\}$ is finite (remark: \emptyset is considered as a finite set). Prove that $\lim_{x \to a} f(x) = 0$ for any $a \in \mathbb{R}$.
- 4. Consider a bounded function $f : \mathbb{R} \to \mathbb{R}$ and a fixed $a \in \mathbb{R}$. Define for each r > 0:

$$m(r) := \inf\{f(x) : x \in (a-r, a+r) \setminus \{a\}\} \text{ and } M(r) := \sup\{f(x) : x \in (a-r, a+r) \setminus \{a\}\}.$$

(a) Suppose (just for this part) that a = 0 and

$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}.$$

Find m(r) and M(r) for any r > 0. Justify your answers.

- (b) Why do $\lim_{r \to 0^+} m(r)$ and $\lim_{r \to 0^+} M(r)$ always exist?
- (c) Show that the following are equivalent:
 - i. $\lim_{r \to 0^+} m(r) = \lim_{r \to 0^+} M(r).$
ii. $\lim_{r \to 0^+} f(x)$ exists.
- (d) Define:

$$S = \left\{ L \in \mathbb{R} : \exists \{x_n\}_{n=1}^{\infty} \text{ in } \mathbb{R} \setminus \{a\} \text{ such that } \lim_{n \to \infty} x_n = a \text{ and } \lim_{n \to \infty} f(x_n) = L \right\}.$$

Show that

$$\sup_{r>0} m(r) = \inf S \text{ and } \inf_{r>0} M(r) = \sup S.$$

5. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} such that the map $n \mapsto a_n$ is injective. Define a function $f : \mathbb{R} \to \mathbb{R}$ by:

$$f(x) := \sum_{\{n \in \mathbb{N}: a_n < x\}} \frac{1}{2^n}.$$

(a) Find the explicit formula (without summation) of the function f(x) in the two cases (i) $a_n = n$; (ii) $a_n = \frac{(-1)^n}{n}$. In each case, write down the set of all discontinuities S_f where

 $S_f := \{c \in \mathbb{R} : f \text{ is not continuous at } c\}.$

- (b) Show that (in general) f is continuous at any $c \neq a_n$, and not continuous at any a_n . In other words $S_f = \{a_n : n \in \mathbb{N}\}$.
- 6. Consider a function $f : \mathbb{R} \to \mathbb{R}$. For each $a \in \mathbb{R}$ and $\delta > 0$, we define

$$\omega_f(a,\delta) := \sup \left\{ |f(x) - f(y)| : x, y \in (a - \delta, a + \delta) \right\}$$
$$\omega_f(a) := \inf_{\delta > 0} \omega_f(a,\delta)$$

In layman terms, $\omega_f(a, \delta)$ measures how f fluctuates in the interval $(a - \delta, a + \delta)$, and $\omega_f(a)$ is its infinitesimal fluctuation near a.

(a) Show that the set of discontinuities of f can be expressed as:

$$S_f = \bigcup_{n=1}^{\infty} \left\{ a \in \mathbb{R} : \omega_f(a) \ge \frac{1}{n} \right\}.$$

(b) Show also that for any $n \in \mathbb{N}$ the set

$$\Omega_n := \left\{ a \in \mathbb{R} : \omega_f(a) \ge \frac{1}{n} \right\}$$

is closed. (In real analysis jargon, we then say S_f is an F_{σ} set).

- 7. (Exercise 2.43) Prove that any continuous $f : \mathbb{R} \to \mathbb{R}$ that is periodic (i.e. $\exists T > 0$ such that f(x + T) = f(x) for any $x \in \mathbb{R}$) must be uniformly continuous on \mathbb{R} .
- 8. (Exercise 2.46) Let $f : [a, b] \to \mathbb{R}$ be a continuous function defined on a closed and bounded interval [a, b]. Given any $\varepsilon > 0$, we define recursively

$$c_0 := a$$

 $c_n := \sup\{c \in [a,b] : |f(x) - f(c_{n-1})| < \varepsilon \text{ for any } x \in [c_{n-1},c]\} \text{ for } n \ge 1.$

- (a) Show that there exists $N \in \mathbb{N}$ such that $c_n = b$ for any $n \ge N$.
- (b) Hence, given another proof of Theorem 2.4.1 (that continuous functions on a closed and bounded interval must be uniformly continuous on that interval).
- 9. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

$$|f(x) - f(y)| \ge |x - y|$$
 for any $x, y \in \mathbb{R}$.

- (a) Prove that any $c \in \mathbb{R}$ is bounded between f(A) and f(-A) where A = |c f(0)|.
- (b) Hence, show that *f* is bijective.
- 10. Show that there is no continuous function $f : \mathbb{R} \to \mathbb{R}$ such that for any $c \in \mathbb{R}$ the set $f^{-1}(c) = \{x \in \mathbb{R} : f(x) = c\}$ has exactly two elements.