MATH 6250I • Fall 2018 • Riemannian Geometry Problem Set #3 • Due Date: 09/12/2018

- 1. Exercises 11.1 and 11.2
- 2. Consider a Riemannian manifold (M, g) with $\nabla \text{Rm} \equiv 0$. Let $\gamma(t) : [a, b] \to M$ be a unitspeed geodesic. Consider the operator at each point $\gamma(t)$:

$$\begin{aligned} \mathfrak{R}_{\gamma(t)} &: T_{\gamma(t)}M \to T_{\gamma(t)}M\\ \mathfrak{R}_{\gamma(t)}(X) &:= \operatorname{Rm}(X,\dot{\gamma})\dot{\gamma} \end{aligned}$$

[For LaTeX-typer: \Re is \mathfrak{R}]

- (a) Show that \Re is self-adjoint with respect to g (and hence its diagonalizable with real eigenvalues).
- (b) Show that the set of eigenvalues of ℜ is independent of t, and there exists an orthonormal eigen-basis {e_i(t)}_{i=1}ⁿ of ℜ so that each e_i(t) is parallel along γ.
- (c) Denote $\{\lambda_i\}_{i=1}^n$ the set of eigenvalues of \mathfrak{R} . Show that if $V(t) = \sum_{i=1}^n V^i(t)e_i(t)$ is a Jacobi field along γ , then each $V^i(t)$ satisfies the following "hand-solvable" ODE:

$$\frac{d^2}{dt^2}V^i(t) + \lambda_i V^i(t) = 0.$$

3. Let $\gamma_{u,s}(t)$, with $u, s \in (-\varepsilon, \varepsilon)$ and $t \in [a, b]$, be a smooth 2-parameter family of smooth curves with $\gamma_{0,0}(t)$ being a unit-speed geodesic on a Riemannian manifold (M, g). Suppose $\gamma_{u,s}(a) = p$ and $\gamma_{u,s}(b) = q$ for any u, s. Denote:

$$U := \frac{\partial \gamma_{u,s}(t)}{\partial u}, \ S := \frac{\partial \gamma_{u,s}(t)}{\partial s}, \ T := \frac{\partial \gamma_{u,s}(t)}{\partial t}.$$

Prove the second variation formula of the length functional $L(\gamma_{u,s})$:

$$\frac{\partial^2 L(\gamma_{u,s})}{\partial u \partial s} \Big|_{(u,s)=(0,0)} = \int_a^b g(\nabla_T U^N, \nabla_T S^N) - \operatorname{Rm}(U, T, T, S) \, dt =: I(U, S).$$

4. Consider a smooth family of Riemannian metrics g(t) to the Ricci flow $\frac{\partial g_{ij}}{\partial t} = -2R_{ij}$, where $t \in [0, T)$, on a closed manifold M. We have shown that the Ricci tensor (in any dimension of M) satisfies a heat-type equation below (in fact we have calculated the variation of Ric under any variation $\frac{\partial g_{ij}}{\partial t} = v_{ij}$):

$$\frac{\partial R_{ij}}{\partial t} = \Delta R_{ij} + 2g^{pk}g^{ql}R_{kijl}R_{pq} - 2g^{kl}R_{ik}R_{jl}$$

(a) Show that when $\dim M = 3$, we have:

$$\frac{\partial R_{ij}}{\partial t} = \Delta R_{ij} + 3RR_{ij} - 6g^{kl}R_{ik}R_{jl} + \left(2\left|\operatorname{Ric}\right|^2 - R^2\right)g_{ij}.$$

- (b) Hence, using Hamilton's tensor maximum principle, show that each of the following conditions is preserved under the Ricci flow:
 - i. $\frac{1}{2}Rg_{ij} R_{ij} \ge 0$ ii. $R_{ij} \ge \varepsilon Rg_{ij} > 0$ where $\varepsilon \in (0, 1/3)$ is a constant.
- 5. In the finishing part of Hamilton's 3-manifold paper, the Bonnet-Myers' Theorem was used. The author applied the theorem by observing that $\operatorname{Ric}(g(t)) \geq \varepsilon(1-\eta)R_{\max}(t)g(t)$ on the geodesic ball $B_{g(t)}(p_t, \eta^{-1}R_{\max}(t)^{-1/2})$, and showed that for $\eta > 0$ small, the geodesic ball is the entire M. However, the statement of Bonnet-Myers' Theorem requires a uniform Ricci lower bound on the whole M, not just on a ball.

Explain why Hamilton's argument is still valid.