MATH 6250I • Fall 2018 • Riemannian Geometry Problem Set #1 • Due Date: 30/09/2018

1. Let \mathbb{S}^n be the unit sphere $x_1^2+\cdots+x_{n+1}^2=1$ in \mathbb{R}^{n+1} , and $f:\mathbb{S}^n\to(0,\infty)$ be a smooth (i.e. C^∞) scalar function. Write $X=(x_1,\cdots,x_{n+1})$. Consider the set Σ defined by:

$$\Sigma := \{ f(X)X : X \in \mathbb{S}^n \}.$$

Let $F(u_1, \dots, u_n)$ be a smooth local parametrization of \mathbb{S}^n and denote the first fundamental form under this local coordinate system by $g_{ij} := g(\frac{\partial F}{\partial u_i}, \frac{\partial F}{\partial u_j})$. Now consider the induced local parametrization $G(u_1, \dots, u_n)$ of Σ , defined as

$$G(u_1, \cdots, u_n) = f(F(u_1, \cdots, u_n))F(u_1, \cdots, u_n).$$

Calculate the first and second fundamental forms \widetilde{g}_{ij} and \widetilde{h}_{ij} , the mean curvature, and the Gauss curvature of Σ .

- 2. Verify that the Fubini-Study metric defined in Example 8.8 is indeed a Riemannian metric.
- 3. Consider \mathbb{R}^{n+1} , with coordinates denoted by (x_0, x_1, \cdots, x_n) , and the Minkowski metric:

$$\eta = -dx^0 \otimes dx^0 + \sum_{j=1}^n dx^j \otimes dx^j.$$

Consider the subset

$$\mathbb{H}^n := \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : -x_0^2 + x_1^2 + \dots + x_n^2 = -1 \text{ and } x_0 > 0\}.$$

- (a) Show that $g_{\mathbb{H}} := \iota^* \eta$, where $\iota : \mathbb{H}^n \to \mathbb{R}^{n+1}$ is the inclusion map, is a Riemannian metric on \mathbb{H}^n .
- (b) Let \mathbb{B}^n be the open ball of radius 1 in \mathbb{R}^n with coordinates (y_1, \dots, y_n) . Consider the Riemannian metric

$$g_{\mathbb{B}} := \frac{4(dy^1 \otimes dy^1 + \dots + dy^n \otimes dy^n)}{(1 - y_1^2 - \dots - y_n^2)^2}.$$

Show that $(\mathbb{H}^n, g_{\mathbb{H}})$ and $(\mathbb{B}^n, g_{\mathbb{B}})$ are isometric via the map

$$(x_0, x_1, \cdots, x_n) \mapsto \frac{1}{1 + x_0} (x_1, \cdots, x_n).$$

(c) Let \mathbb{R}^n_+ be the upper half-space of \mathbb{R}^n with coordinates (u_1, \dots, u_n) and $u_1 > 0$ for \mathbb{R}^n_+ . Consider the Riemannian metric

$$g_+ := \frac{du^1 \otimes du^1 + \dots + du^n \otimes du^n}{u_1^2}.$$

Show that $(\mathbb{B}^n, g_{\mathbb{B}})$ and (\mathbb{R}^n_+, g_+) are isometric via the map

$$\underline{x} := (x_1, \dots, x_n) \mapsto \frac{\left(1 - |\underline{x}|^2, 2x_2, \dots, 2x_n\right)}{|\underline{x} - (1, 0, \dots, 0)|^2}.$$

4. Let (M,g) be a Riemannian manifold, and Σ be a submanifold of M. Denote $\iota: \Sigma \to M$ the inclusion map. Then, $\overline{g} := \iota^* g$ is a Riemannian metric on Σ . Show that the Levi-Civita connection of (Σ, \overline{g}) , denoted by $\overline{\nabla}$, is given by:

$$\overline{\nabla}_X Y = (\nabla_X Y)^T := \text{ projection of } \nabla_X Y \text{ onto } T\Sigma$$

for any $X, Y \in \Gamma^{\infty}(T\Sigma)$.

5. Exercises 8.8, 8.9, 8.10 and 8.13 in the instructor's lecture notes.