Linear functions and Differentiable functions

for f being linear on V.

Properties of linear functions
• Homogeneity:
$$f(\sigma x) = \alpha f(x)$$
 $\forall x \in \mathbb{R}$ and $x \in V$.
(Because $f(\alpha x) = f(\alpha x + \alpha x) = \alpha f(x) + 0 f(x) = \alpha f(x)$)
It implies $f(0) = 0$, because $f(0) = f(0 \cdot x) = 0$ $\forall x \in V$.
• Additivity : $f(x + y) = f(x) + f(y)$ $\forall x, y \in V$.
• $f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha_1 f(x_1) + \dots + \alpha_k f(x_k)$, $\forall \alpha_1, \dots, \alpha_k \in \mathbb{R}$, $x_1, \dots, x_k \in V$.
To see this, we note that
 $f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha_1 f(x_1) + f(\alpha_2 x_2 + \dots + \alpha_k x_k)$
 $= \alpha_1 f(x_1) + \alpha_2 f(x_2) + f(\alpha_3 x_3 + \dots + \alpha_k x_k)$

Innex product representation of a linear function on Hilbert spaces
For simplicity, let's consider a linear function on
$$\mathbb{R}^n$$
 equipped with the
standard innex product $\langle X, Y \rangle = x^T Y$ and the induced norm $\|X\|_2 = (\langle X, X \rangle)^{\ell_2}$
• From the discussion above,
For any given $A \in \mathbb{R}^n$, the function $f(X) = \langle A, X \rangle$ is linear.
• The reverse is true, i.e.,
Any linear function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ must be in the form of
 $f(X) = \langle A, X \rangle$ for some $A \in \mathbb{R}^n$.
To see this, let e_1, e_2, \dots, e_n , where $e_i = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \in ith$, be a basis of \mathbb{R}^n ,
So that any $X = \begin{pmatrix} X_1 \\ X_2 \\ X_N \end{pmatrix} \in \mathbb{R}^n$ is written as $X = X_1 e_1 + X_2 e_2 + \dots + X_n e_n$.
Therefore, if f is a linear function, then

$$f(x) = f(x_{i}e_{i} + x_{i}e_{i} + \dots + x_{n}e_{n})$$

$$= x_{i}f(e_{i}) + x_{2}f(e_{i}) + \dots + x_{n}f(e_{n}) - by property of binary functions = ,
where $a = \begin{pmatrix} f(e_{i}) \\ \vdots \\ f(e_{n}) \end{pmatrix} \in \mathbb{R}^{n}$.
• Furthermore, the representation of a linear function $f(x) =$ is unique, which means there is only one vector $a \in \mathbb{R}$ for which $f(x) =$ holds for all x .
Indeed, suppose that a is not unique, i.e., we have two vectors $a_{i}b$ such that $f(x) =$ and $f(x) =$ for all $x \in \mathbb{R}^{n}$.
Then, let $x = e_{i}$: $f(e_{i}) = = a_{i}$ and $f(e_{i}) = = b_{i}$.
• Aleogeter, we see that
 a linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ if and only if $f(x) =$ for some unique $a \in \mathbb{R}^{n}$.
The above holds true for any linear function on Hilbert spaces, widdy known as Riesz representation theorem.
Theorem (Riesz representation thareom):
Let H be a Hilbert space, and f be a function: $H \rightarrow \mathbb{R}$. Then
 f is linear and bonduli f and only if $f(x) =$ for some unique $a \in H$.
Example 1: We know mean(x) is linear on \mathbb{R}^{n} . Since \mathbb{R}^{n} is a Hilbert space, we can find a unique $a \in \mathbb{R}^{n}$ st.
 $mean(x) = t(x+x,t-...tx_{n}) = tx_{n} + tx_{n} =$$$

where
$$a = (\pm, \pm, \cdots, \pm)^T$$
.
Example 2: Let H be a Hilbert space, and II-II is the norm.
It is known that the norm function is NOT kinear.
Therefore,
there obesn't exist $a \in H$ such that $||x|| = \langle a, x \rangle$ bixeH.
Hyperplanes
• Again, we consider \mathbb{R}^n as a Hilbert space, where any binear
function is written as $\langle a, x \rangle$ for some $a \in \mathbb{R}^n$.
Consider the set
 $S_{a,p} = \{ x \mid \langle a, x \rangle = 0 \}$,
Then, $\forall x, y \in S_{a,p}$ and $\forall, \beta \in \mathbb{R}$,
 $\langle a, \alpha \langle x + \beta \rangle \rangle = \alpha \langle a, x \rangle + \beta \langle a, y \rangle = 0 \Rightarrow \alpha \langle x + \beta \rangle \in S$.
Thurefore, $S_{a,p}$ is a plane.
Since the co-dimension of So is 1 (because it is define by one equation)
 $S_{a,p}$ is called a hyperplane.
Now lets consider
 $S_{a,b} = \{ x \mid \langle a, x \rangle = b \}$ for $b \in \mathbb{R}$ is given.
Let $x_0 \in S_{a,b}$, i.e., $\langle a, x_0 \rangle = b$, be fixed.
Then $S_{a,b} = S_{a,0} + x_0$ because:
(D) $\forall x \in S_{a,b} = \langle a, x \rangle = \langle a, x \rangle - \langle a, x_0 \rangle = 0$, $\Rightarrow x + x_0 \in S_{a,0}$.

 $(2) \forall x \in S_{a,o} \quad \langle a, x + \chi_o \rangle = \langle a, x \rangle + \langle a, \chi_o \rangle = b \implies x + \chi_o \in S_{a,b}$ In other words, Sa, b is a shift of a hyperplane, still called a hyperplane. Sab Xo 0 Sa,0 • This concept can be generalized to any inner product space V. The set {XEV < a, x>=b}, where a EV and bER are given is called a Hyperplane in V. Projection onto hyperplanes · Consider a Hilbert space V and a hyperplane S $S = \{x \in V \mid \langle a, x \rangle = b\}$ Let YEV be a given vector. The vector on Sthat is the closest to Y is called the projection of yon S, denoted by Psy, Psy i.e., $P_s y = \arg \min_{x \in s} ||x - y||$. · Let us find an explicit expression of Psy in terms of a, b, and y. Theorem: Z is a solution of min ||x-y|| if and only if ZES and <Z-Y, Z-x>=0 VXES. Proof DWe first prove that: If ZES is a solution of min 11x-y11,

then <Z-Y,Z-X>=0 YXES.

Since
$$\Xi$$
 is a solution, $\Xi \in S$, i.e., $\langle a, Z \rangle = b$.
 $\forall x \in S$ and $t \in R$, it is easy to see that
 $\langle a, (|+t) \ge -tx \rangle = (i+t) \langle a, Z \rangle - t \langle a, x \rangle = b$.
Therefore, $(i+t) \ge -tx \in S$.
Since Z is closest to Y on S , we have
 $\|II \ge -Y\|^2 \le \|((i+t) \ge -tx - Y)\|^2$
 $= \|(Z - Y) + t(Z - x)\|^2$
 $= \|(Z - Y) + t(Z - x)\|^2$
i.e., $t < Z - Y$, $Z - x \rangle \ge -\frac{t^2}{2} \|Z - x\|^2$.
i.e., $t < Z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.
i.e., $t < Z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.
i.e., $t < Z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.
i.e., $t < Z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.
i.e., $t < Z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.
i.e., $t < Z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.
i.e., $t < z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.
i.e., $t < z - Y$, $Z - x \rangle \ge -\frac{t}{2} \|Z - x\|^2$.

Ø

Theorem: The solution of $\min_{x \in S} x - y ^2$ exists and unique, which is
given by $y = \left(\frac{\langle a, y \rangle - b}{ a ^2}\right)a$
proof. denote $Z = y - (\frac{\langle a, y \rangle - b}{a})a$.
$D \langle a, z \rangle = \langle a, y \rangle - \left(\frac{\langle a, y \rangle - b}{ a ^2} \right) \langle a, a \rangle$
= (a,y> - ((a,y7-6) = 6, so ZES
② ∀ x∈S,
$(z-y, z-x) = -\frac{\langle a, y-b}{ a ^2} \langle a, z-x \rangle$
$= -\frac{\langle a, y \rangle - b}{ a ^2} \left(\langle a, z \rangle - \langle a, x \rangle \right) = 0$
$(because \langle a, z \rangle = \langle a, x \rangle = b)$
By the previous theorem, Z is a solution of $\max_{X \in S} X - Y $.
It remains to show the uniqueness.
Suppose we have two solutions z_1 and z_2 . Then,
Z_1 is a solution, $= X Z_1 - Y$, $Z_1 - Z_2 > = 0$
Z_2 is a solution, $\Rightarrow \langle Z_2 - Y, Z_2 - Z_1 \rangle = 0$
Taking difference leads to $(z_1 - z_2, z_1 - z_2) = 0$
$\implies \mathcal{Z}_1 - \mathcal{Z}_2 ^2 = 0 \implies \mathcal{Z}_1 = \mathcal{Z}_2 \qquad \bigotimes$
• In summary, the projection Psy of YEV onto the hyperplane
$S = \{x \in V \langle a, x \rangle = b\}$
exists and is unique. Furthermore,
$P_{s}y = y - (\frac{\langle a, y \rangle - b}{ a ^2})a$
and it satisfies
$\langle P_s y - y, P_s y - x \rangle = 0.$

Affine functions
A linear function plus a constant is called an affine function.
That is, a function
$$f: V \Rightarrow R$$
 is affine if
 $f(x) = g(x) + b$,
where $g: V \Rightarrow R$ is linear and $b \in R$ is a anstant.
Properties:
If $f: V \Rightarrow R$ is affine, then
 $f(xx + \beta y) = \alpha f(x) + \beta f(y)$ $\forall x, y \in V$ and $\alpha, \beta \in R$ s.t. $\alpha + \beta = 1$.
To see this, linear $\alpha + \beta = 1$
 $f(\alpha x + \beta y) = g(\alpha x + \beta y) + b = \alpha g(\alpha) + \beta g(y) + (\alpha + \beta) b$
 $= \alpha (g(\alpha) + b) + \beta (g(y) + b) = \alpha f(x) + \beta F(y)$.
If $f: V \Rightarrow R$, where V is a Hilbert space, then
 f must be in the form of
 $f(x) = \langle a, x \rangle + b$, where $a \in V$ and $b \in R$.

§ 2.2 Case Studies: Regression and Classification.

§2.2.1 Regression: · Given a set of data $(\chi_1, y_1), (\chi_2, y_2), \dots, (\chi_N, y_N),$ where Xi EIRⁿ is an input feature vector , i=1,2,...,N. YiER is the corresponding response to Xi. Given a new input feature vector XER", how to predict the corresponding response YER? For example, Xi ER represents n attributes of a house, and YiER is the selling price. We want to predict the selling price of a house with feature XER". · Mathematically, we need to find a function $f:\mathbb{R}^n \to \mathbb{R}$ such that $f(X_i) \approx Y_i$, $i=1,2,\cdots,N$ This is called regression. In this context, Xi, are called regressor / independent varibles Yi are called dependent variables / out come / label. • The class of all functions $\mathbb{R}^n \rightarrow \mathbb{R}$ is too large, and the given data set {(Xi, Yi)}_{i=1}^N is not enough to determine a function uniquely. So, we need to find a function class Φ where we search f. Intuitively, larger N, larger function class $\overline{\Phi}$. · Linear model: We search f in the class orf all affine functions, i.e., $f(x) = \langle a, x \rangle + b$ for some $a \in \mathbb{R}^n$, $b \in \mathbb{R}$.

Thus, we find
$$\alpha \in \mathbb{R}^{n}$$
 and $b \in \mathbb{R}$, s.t.
 $\langle \alpha, \chi_{i} \rangle + b \approx y_{i}$, $i=1,2,\cdots,N$,
by minimizing the error of the linear equations.
While there are many possible definitions of error, it is popular to
consider the square error as follows:
 $(\langle \alpha, \chi_{i} \rangle + b - y_{i})^{2}$, $i=1,2,\cdots,N$.
Therefore, we find $\alpha \in \mathbb{R}^{n}$, $b \in \mathbb{R}$ by solving
 $\min_{\substack{\alpha \in \mathbb{R}^{n}, i} \in \mathbb{R}^{n}$, $b \in \mathbb{R}$ by solving
 $\min_{\substack{\alpha \in \mathbb{R}^{n}, i} \in \mathbb{R}^{n}$, $b \in \mathbb{R}^{n}$, $b \in \mathbb{R}^{n+1}$
 $\lim_{\substack{\alpha \in \mathbb{R}^{n}, i} i \in \mathbb{R}^{n \times (n+1)}$, $\beta = \begin{bmatrix} \alpha \\ b \end{bmatrix} \in \mathbb{R}^{n+1}$
 $\lim_{\substack{\alpha \in \mathbb{R}^{n}, i} i \in \mathbb{R}^{n}$.
This problem is called the least squares (LS) problem.
Write $\chi = \begin{bmatrix} \chi_{i}^{T} & i \\ \chi_{i}^{T} & i \end{bmatrix} \in \mathbb{R}^{N \times (n+1)}$, $\beta = \begin{bmatrix} \alpha \\ b \end{bmatrix} \in \mathbb{R}^{n+1}$
and $y = \begin{pmatrix} y_{i} \\ y_{i} \end{pmatrix} \in \mathbb{R}^{N}$.
Then LS problem becomes
 $\begin{bmatrix} \min_{\substack{\beta \in \mathbb{R}^{n+1} \\ \beta \in \mathbb{R}^{n}$.
Then LS problem becomes
 $\begin{bmatrix} \min_{\substack{\beta \in \mathbb{R}^{n}, \\ \beta \in \mathbb{R}^{n}} \\ \beta = n+1 \\ \beta \in \mathbb{R}^{n} \\ \beta = n+1 \\ \beta =$

Here
$$\|p\|_{\alpha}^{\alpha}$$
 is the regularization term
 $\lambda > 0$ is a predefinal regularization parameter.
In other words, we find β such that frame in
the error of data fitting and the 2-norm of β regression
are minimized simultaneously.
Therefore, ridge regression gives a β such that
 $X \beta \approx y$ and $\|\beta\|_{\alpha}$ is small.
 $- LASSO$ regression: we solve
 $\begin{bmatrix} minimized \\ pare \\ \\ par$

Feature map
$$\oint: \mathbb{R}^n \rightarrow H$$

Then do regression in H .
However, Since H is very large, the set of all linear functions
is also two large. We need regularization.
We solve

$$\frac{\min_{a \in H} \frac{1}{2} \prod_{i=1}^{N} (\langle a, \phi(x_i) \rangle - y_i)^2 + \lambda \|a\|_{H}^{2}}{a \in H}$$
Representer Theorem:
The soluction must be in the form of $a = \sum_{i=1}^{N} C_i \phi(x_i)$ for
some $C = \begin{bmatrix} C_i \\ C_i \end{bmatrix} \in \mathbb{R}^N$.
Proof. For any $a \in H$, we claim that a can be decomposed as
 $a = a_s + \sum_{i=1}^{N} C_i \phi(x_i)$
where $C = \begin{bmatrix} C_i \\ C_i \end{bmatrix} \in \mathbb{R}^N$ and $\langle a_s, \phi(x_i) \rangle = 0$ for $i=1,2,...,N$.

$$\frac{a_s}{\sum_{i=1}^{N-\ldots-n}}$$
(This is N linear equation with N unknows, and it can be
checked there exists at least one solution)
Denote $a_s = a - \sum_{i=1}^{N} C_i \phi(x_i)$. It can be checked
 $\langle a_s, \phi(x_i) \rangle = 0$, $j=1,2,...,N$
due to the construction of C and a_s .
Therefore,
 $\frac{1}{2} \sum_{i=1}^{N} \langle \langle a, \phi(x_i) \rangle - y_i \rangle^2 + \lambda \|a\|_{H}^{2}$

$$= \frac{1}{2} \sum_{i=1}^{\infty} \left(\left\{ \sum_{j=1}^{N} G_{ij}^{2}(x_{j}) + a_{ij}^{2} g(x_{i}) \right\} - y_{i}^{2} + \lambda \right\| \left\{ \sum_{i=1}^{N} G_{ij}^{2}(x_{i}) + a_{ij}^{2} g(x_{i}) \right\} + 2 \left\{ a_{ij}^{2} \sum_{i=1}^{N} G_{ij}^{2}(x_{i}) \right\} + \lambda \left[\left\{ \sum_{i=1}^{N} G_{ij}^{2} G(x_{i}) \right\} + 2 \left\{ a_{ij}^{2} \sum_{i=1}^{N} G_{ij}^{2}(x_{i}) \right\} + \lambda \left[\left\{ \sum_{i=1}^{N} G_{ij}^{2} G(x_{i}) \right\} + \lambda \left[x_{ij}^{2} G(x_{i}) \right\} + \lambda \left[x_{ij}^{2} G(x_{i}) \right\} + \lambda \left[x_{ij}^{2} G(x_{i}) \right] + \lambda \left[x_{ij$$

Let
$$X+6S+$$
 and $X-6S_-$ such that
 $\|[X_{4}-X_{-}\|]_{2} = dist (S_{4}, S_{-}).$
Since X_{+} is a projection of X_{-} onto $S_{+} = \{x_{1} < a, x\} = 1-b\}$
 $X_{+} = X_{-} - \frac{\langle a, X_{-} > tb^{-1} \rangle a}{\|a\|_{2}^{2}} a$
 $= X_{-} - \frac{\langle -1-btb^{-1} \rangle a}{\|a\|_{2}^{2}} a$ (since $X_{-} \in S_{-}$)
 $= X_{-} + \frac{2}{\|A\|_{2}} \alpha$
Thus, $\|[X_{+}-X_{-}\|]_{2} = \|\frac{2}{\|A\|_{2}} \alpha$
Thus, $\|[X_{+}-X_{-}\|]_{2} = \|\frac{2}{\|A\|_{2}} \alpha$
Support Vector Machine (SVM)
 $\max_{x \in \mathbb{N}^{n}} \frac{2}{\pi \|a\|_{x}}$
 $\xi \in \mathbb{R}$ $\frac{2}{\pi \|a\|_{x}}$
 $\xi \in \mathbb{R}$ $\frac{2}{\pi \|a\|_{x}}$
 $\xi \in \mathbb{R}$ $\frac{1}{\pi \|a\|_{x}}$
 $St. \langle a, X_{1} > tb \geq 1 \text{ if } Y_{1} = 1$
 $\langle a, X_{1} > tb \leq -1 \text{ if } Y_{1} = -1$,
which is equivalent to
 $\left[\max_{x \in \mathbb{N}^{n}} \frac{1}{2} \|a\|_{x}^{2}$ (SVM-1)
 $St. \quad Y_{1}(\langle a, X_{1} \rangle + b) \geq 1$
The above SVM is NOT robust to noise.
For example shown on the right,
even we have only two noisy points, there is $\sum_{x \in \mathbb{N}^{n}} \frac{\langle x \times x_{-} \times x_{-}$

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Aagain, one can prove the following representer theorem.
Theorem: Any solution of
$$(K-SVM)$$
 is in the form of
 $a = \sum_{i=1}^{\infty} C_i \phi(X_i)$
proof. Write $a = \sum_{i=1}^{\infty} C_i \phi(X_i) + a_s$ for some $a_s \in H$ and $\langle a_s, \phi(X_i) \rangle = 0$
the rest is the same as the linear regression case. We
Thus, $(K-SVM)$ becomes
 $\left[\min_{C \in \mathbb{R}^N} h\left(y_i \left(\sum_{j=1}^{\infty} K(X_i, X_j) C_j \right) - 1 \right) + \frac{1}{2} C^T K C_r \right)$
where $K = [K(X_i, X_j)]_{i=1, j=1}^{N, N} \in \mathbb{R}^{N \times N}$.
The prediction of the input χ is given by
 $Sgn\left(\sum_{j=1}^{\infty} K(X, X_j) C_j \right)$
Again, only $K(\cdot, \cdot)$ is needed in the kernel SVM,
and no explicit feature map $\phi(\cdot)$ is required.

Recall that for a function
$$f: \mathbb{R} \to \mathbb{R}$$
, the derivative at X_0 is
 $f'(X_0) = \lim_{x \to X_0} \frac{f(x) - f(X_0)}{x - X_0}$,
which is the same as
 $\lim_{x \to X_0} \left| \frac{f(x) - f(x_0) - f'(x_0)(x - X_0)}{x - X_0} \right| = 0$
Notice that $f(X_0) + f'(X_0)(x - X_0)$ is an affine function in \mathbb{R} that
passes through $(X_0, f(X_0))$.
 $f(X_0) + f'(X_0)(x - X_0)$ is an affine function in \mathbb{R} that
 $passes$ through $(X_0, f(X_0))$.
 $f(X_0) + f'(X_0)(x - X_0)$
 $f(X_0) + f'(X_0)(x -$

Consider the differentiation of
$$f$$
 at $\chi^{o} \in V$.

(1) By Riesz representation theorem, any affine function is in the form

of
$$\langle U, x \rangle + a$$
 for some $U \in V$ and $a \in \mathbb{R}$. Since it passes thrue
 $(\chi^{(0)}, f(\chi^{(0)}), \langle U, \chi^{(0)} \rangle + a = f(\chi^{(0)})$ Therefore, the affine function
is in the form of
 $\langle V, \chi \rangle + a = \langle U, \chi - \chi^{(0)} \rangle + \langle U, \chi^{(0)} \rangle + a \rangle$
 $= f(\chi^{(0)}) + \langle U, \chi - \chi^{(0)} \rangle$.
(2). The approxition error is
 $error = |f(\chi) - f(\chi^{(0)}) - \langle U, \chi - \chi^{(0)} \rangle|_{A}$

The error should be in the order of
$$o(||x-x^{(0)}||)$$
, i.e.,

$$\frac{error}{||x-x^{(0)}||} \rightarrow o \quad as \quad x \rightarrow x^{(0)}$$

Definition: Let V be a Hilbert space. Let
$$f: V \rightarrow R$$
. Then f is
said Frechet differentiable if there exists a $v \in V$ such that
 $\lim_{x \to \chi^{(0)}} \frac{|f(x) - f(\chi^{(0)}) - \langle v, x - \chi^{(0)} \rangle|}{||x - \chi^{(0)}||} = 0$.
If f is differentiable at $\chi^{(0)}$, v is called the gradient of f
at $\chi^{(0)}$, denoted by $\nabla f(\chi^{(0)})$.

Example 1:
$$f(x) = ||x||^2$$
, where $||x||$ is the norm on V.
At any $\chi^{(o)} \in V$,
 $||x||^2 = ||\langle x - \chi^{(o)} + \chi^{(o)}||^2 = \langle (x - \chi^{(o)}) + \chi^{(o)} \rangle \langle (x - \chi^{(o)}) + \chi^{(o)} \rangle$
 $= ||x - \chi^{(o)}||^2 + 1|\chi^{(o)}||^2 + 2 \langle \chi^{(o)}, \chi - \chi^{(o)} \rangle$
Therefore, $||x||^2 - (||\chi^{(o)}||^2 + 2 \langle \chi^{(o)}, \chi - \chi^{(o)} \rangle) = ||\chi - \chi^{(o)}||^2$
 $affine approximation$
So $\lim_{\chi \to \chi^{(o)}} \frac{||x||^2 - ||\chi^{(o)}||^2 - \langle 2\chi^{(o)}, \chi - \chi^{(o)} \rangle|}{||\chi - \chi^{(o)}||} = \lim_{\chi \to \chi_0} \frac{||x - \chi^{(o)}||^k}{||\chi - \chi^{(o)}||} = 0$.

Thus,
$$\nabla f(x^{(0)}) = 2x^{(0)}$$

Example 2: $f(x) = \langle a, x \rangle$ for some $a \in V$.
At any $x^{(0)} \in V$,
 $\langle a, x \rangle = \langle a, x^{(0)} \rangle + \langle a, x - x^{(0)} \rangle$
Therefore, $\lim_{X \to x^{(0)}} \frac{|\langle a, x \rangle - \langle a, x^{(0)} \rangle - \langle a, x - x^{(0)} \rangle|}{||x - x^{(0)}||} = \lim_{X \to 3} \frac{0}{||x - x^{(0)}||} = 0$.
Thus, $\nabla f(x^{(0)}) = a$.

Example 3:
$$f(x) = ||x - \alpha||^2$$
 for some $\alpha \in V$.
At any $\chi^{(o)} \in V$,
 $f(x) = ||x - \alpha||^2 = ||\alpha^{(o)} - \alpha| + (x - x^{(o)})||^2$
 $= ||x^{(o)} - \alpha||^2 + ||x - x^{(o)}||^2 + 2 \langle x^{(o)} - \alpha, x - x^{(o)} \rangle$
 $= f(x^{(o)}) + \langle 2(x^{(o)} - \alpha), x - x^{(o)} \rangle + ||x - x^{(o)}||^2$
So, $\lim_{x \to x^{(o)}} \frac{|f(x) - f(x^{(o)}) - \langle 2(x^{(o)} - \alpha), x - x^{(o)} \rangle|}{||x - x^{(o)}||} = \lim_{x \to x^{(o)}} ||x - x^{(o)}|| = 0$.
Therefore, $\nabla f(x^{(o)}) = 2(x^{(o)} - \alpha)$

Properties:
(1) Frechet differentiation is linearly, i.e.,

$$\nabla(\alpha f + \beta g)(x) = \alpha \nabla f(x) + \beta \nabla g(x)$$
.
(2) Chain rule: Let $f:V \rightarrow \mathbb{R}$ and $g:\mathbb{R} \rightarrow \mathbb{R}$. Then $gof:V \rightarrow \mathbb{R}$ and
 $\nabla(gof)(x) = g'(f(x)) \cdot \nabla f(x)$
if f and g are differentiable at x and $f(x)$ respectively.
Example 4: $f(x) = \Pi X \Pi$ $\forall x \in V$.

This is a composition of
$$f_{1}(x) = ||x||^{2}$$
 from $V \to \mathbb{R}$
and $f_{2}(t) = \sqrt{f}$ from $\mathbb{R} \to \mathbb{R}$.
When $||x|| \neq 0$, both f_{1} and f_{2} are differentiable.
Also, $\forall f_{1}(x) = 2\chi$, $f_{2}(t) = \frac{1}{2\sqrt{f}}$ if $t \neq 0$.
So, $\nabla f(x) = \nabla (f_{2} \circ f_{1})(x) = f_{1}'(f_{1}(x) \cdot \nabla f_{1}(x))$
 $= \frac{1}{2\sqrt{||x||^{2}}} \cdot 2\chi = \frac{\chi}{||\chi||}$.
When $||\chi|| = 0$, (i.e., $\chi = 0$), $f_{2}(t)$ is NOT differentiable at $f_{1}(x) = 0$.
It can be shown that $f(x) = ||\chi||$ is NOT differentiable at $\chi = 0$.
(3) For functions on \mathbb{R}^{n} : $f : \mathbb{R}^{n} \to \mathbb{R}$
 $\nabla f(\chi) = \begin{pmatrix} \frac{f_{1}'(\chi)}{2\chi} \\ \frac{f_{2}'(\chi)}{2\chi} \\ \frac{f_{2$

§ 2.4. Linear operators and Higher-order darivatives
• Linear operator / Linear transformations
Now we consider functions between vector spaces.
Let V1, V2 be two vector spaces
A map L:
$$V_1 \rightarrow V_2$$
 is a linear operator (a.k.a. linear transformation)
if: $L(\alpha X + \beta Y) = \alpha L(x) + \beta L(y) \quad \forall \alpha, \beta \in \mathbb{R}, x \in V_1.$
Example 1: Let $A = \begin{bmatrix} a_{11} - \cdots & a_{1n} \\ \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$
Then the transformation: $\mathbb{R}^n \rightarrow \mathbb{R}^m$ defined by
 $x \rightarrow AX$, where Ax is the matrix-vector product.
is a linear transformation, because
 $A(\alpha X + \beta Y) = \alpha AX + \beta AY.$
Reversely, any linear transformation $L : \mathbb{R}^n \rightarrow \mathbb{R}^m$ must be in
the form of $L(x) = AX$ for some matrix $A \in \mathbb{R}^{m \times n}$.
Example 2: Let $f: V \rightarrow \mathbb{R}$ be a linear function on V .
Then f is a linear transformation from V to \mathbb{R} , as \mathbb{R} is
a vector space.
Example 3: Let $A \in \mathbb{R}$. Then define $L : \mathbb{R} \rightarrow V$ by
 $L(x) = aX$. Then L is a linear operator.
Example 4: Let $V_1 = \{f \mid f \text{ ord } f' \text{ is continuous on } Ca, big\}$
and $V_2 = \{f \mid f \text{ is an linear operator.} D: V_1 \rightarrow V_2$ defined by
 $Df = f' \text{ is an linear operator.}$

• Operator norm

Consider the set of all linear operators $V_1 \rightarrow V_2$, where V_1 , V_2 are two normed space.

•
$$\forall A, B$$
 linear operators $V_1 \Rightarrow V_2$, define $A+B$ by
 $(A+B)(x) = A(x) + B(x)$ $\forall x \in V_1$
• $\forall d \in \mathbb{R}$ and A linear operator $V_1 \Rightarrow V_2$, define $A A$ by
 $(A A)(x) = A A(x)$ $\forall x \in V_1$.
Then, the set of all linear operator $V_1 \Rightarrow V_2$ is a vector space.
So, we can define a norm on it. For any linear operator $A: V_1 \Rightarrow V_2$
 $\|A\| = \sup_{\|x\|_{V_1}=1} \|Ax\|_{V_2}$ $(11 \cdot \|V_1, \|1 \cdot \|V_2 - the norm$
 $n V_1$ and V_2 respectively
the unit hall in $\|1 \cdot \|V_1$.
 V_1 V_2

 $\langle A \chi, y \rangle_{V_2} = \langle \chi, A^* y \rangle_{V_1}$ & $\chi \in V_1$ and $y \in V_2$.

2 . ,

Example 1: Consider
$$A \in \mathbb{R}^{m \times n} = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$$

Then $\langle A \chi, y \rangle = y^T A \chi = (A^T y)^T \chi = \langle \chi, A^T y \rangle$ $\forall \chi \in \mathbb{R}^n$
Therefore, the adjoint of A is its transpose A^T .
Example 2: Let V be an inner product space.
Consider $\mathcal{L}(V, \mathbb{R})$, i.e., bounded linear functions on V .
Let $f: V \Rightarrow \mathbb{R}$. Then, $f(\chi) = \langle a, \chi \rangle_V$ for some $a \in V$.
Therefore, $\forall \chi \in V$, $y \in \mathbb{R}$,
 $\langle f(\chi), y \rangle_{\mathbb{R}} = yf(\chi) = y \langle a, \chi \rangle_V = y \langle \chi, a \rangle_V = \langle \chi, y a \rangle_V$
Therefore, $f^*(y) = ya$, $\forall y \in \mathbb{R}$,
Obviously, $f^* \in \mathcal{L}(\mathbb{R}, V)$.

• Differentiation of transformations between normed spaces
Let V1, V2 be two normed spaces with inner products ||.||v, and ||.||v2
Let F: V1
$$\rightarrow$$
 V2 be a map (not necessarily linear)
Then, ct any point $\chi^{(0)} \in V_1$, then linear approximation passing thru
 $(\chi^{(0)}, F(\chi^{(0)})$ is
 $F(\chi) \approx F(\chi^{(0)}) + L(\chi - \chi^{(0)})$, where $L \in L(V_1, V_2)$.
If this approximation is $o(||\chi - \chi^{(0)}||_{V_1})$, then L is called the differentiation
Definition: F: V1 \rightarrow V2 is differentiable at $\chi^{(0)} \in V_1$, if there exists
 $L \in L(V_1, V_2)$ such that
 $\lim_{X \to \chi^{(0)}} \frac{||F(\chi) - F(\chi^{(0)}) - L(\chi - \chi^{(0)})||_{V_2}}{||\chi - \chi^{(0)}||_{V_1}} = 0$.
L is called a derivative of F at $\chi^{(0)}$, denoted by
 $DF(\chi^{(0)}) = L$.

Example 1: If
$$f: V \rightarrow R$$
 with V a Hilbert space, then
 $Df(X^{(0)}) y = \langle \nabla f(X^{(0)}), y \rangle \quad \forall y \in V.$
Example 2: Let $A \in \mathcal{L}(V_1, V_2)$, then, for any $X^{(0)} \in U_1$,
 $\lim_{X \to X^{(0)}} \frac{||AX - AX^{(0)} - A(X - X^{(0)})||_{V_2}}{||X - X^{(0)}||_{V_1}} = 0.$
 $X \rightarrow X^{(0)} \frac{||X - X^{(0)}||_{V_1}}{||X - X^{(0)}||_{V_1}} = A.$
Chain Rule: Let $F: V_1 \rightarrow V_2$, $G: V_2 \rightarrow V_3$,
Then $G \circ F : V_1 \rightarrow V_3$
Then $D(G \circ F)(X) = DG(F(X) \circ DF(X).$
Example 3: $f(X) = f_1(X) f_2(X)$, where $f, f, f_1: V \rightarrow R$
Define $F: V \rightarrow R^2$ as $F(X) = (f_1(X))$ $\forall X \in V$
 $G: R^2 \rightarrow R$ as $G(\mathcal{C}) = \alpha \beta$ $\forall \alpha \beta^{\beta R}$
Then $f(X) = G(F(X))$
So $Df(X) = DG(F(X)) \circ DF(X)$
Let's calculate
 $O DG(\mathcal{C}) = DG(F(X)) \circ DF(X)$
 $Let's calculate$
 $O DG(\mathcal{C}) = TG(\mathcal{C}) + Df_1(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$
 $f_1(X) = f_1(X^{(0)}) + Df_2(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$
 $f_2(X) = f_2(X^{(0)}) + Df_2(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$
 $V = F(X^{(0)}) + Df_2(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$
 $V = F(X^{(0)}) + Df_2(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$
 $V = F(X^{(0)}) + Df_2(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$
 $V = F(X^{(0)}) + Df_2(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$
 $V = F(X^{(0)}) + Df_2(X^{(0)})(X - X^{(0)}) + o(HX - X^{(0)}|)$

$$\begin{split} Df(x)(y) &= \left\langle \begin{pmatrix} f_{1}(x) \\ f_{1}(x) \end{pmatrix}, \begin{array}{l} Df_{1}(x)(y) \\ Pf_{2}(x)(y) \\ \end{array} \right\rangle \\ \hline Df(x)(y) &= Df_{1}(x)(y), f_{2}(x) + f_{1}(x), Df_{2}(x)(y) \\ \hline Ix perturbar, if V is a Hilbert space, \\ \hline Vf(x) &= f_{2}(x), \nabla f(x) + f_{1}(x), \nabla f_{2}(x) \\ \hline Vf(x) &= f_{2}(x), \nabla f(x) + f_{1}(x), \nabla f_{2}(x) \\ \hline Vf(x) &= f_{2}(x), \nabla f(x) + f_{1}(x), \nabla f_{2}(x) \\ \hline Vf(x) &= f_{2}(x), \nabla f(x) + f_{1}(x), \nabla f_{2}(x) \\ \hline Let \ us \ calculate \ Df(x^{(u)}) \ and \ \nabla f(x^{(u)}) \\ f(x) &= \frac{1}{2} \|Ax - b\|_{w}^{2} = \frac{1}{2} \|A(x^{(u)} - b) + A(x - x^{(u)})\|_{w}^{2} \\ &= \frac{1}{2} \|Ax^{(u)} - b\|_{w}^{2} + \langle Ax^{(u)} - b, A(x - x^{(u)})\|_{w}^{2} \\ &= f(x^{(u)}) + \left\langle A^{*}(Ax^{(u)} - b), x - x^{(u)} \right\rangle, \\ &+ \frac{1}{2} \|A(x - x^{(u)})\|_{w}^{2} \\ &= f(x^{(u)}) + \left\langle A^{*}(Ax^{(u)} - b), x - x^{(u)} \right\rangle, \\ &= \frac{1}{2} \|A(x - x^{(u)})\|_{w}^{2} \\ &= \frac{1}{$$

• Hessian of functions on Hilbert spaces
Let
$$f: V \rightarrow \mathbb{R}$$
 where V is a Hilbert space.
I-st order derivative : $\nabla f(x) \in V$.

2-nd order derivative: view
$$X \rightarrow \nabla f(x)$$
 as a map $V \rightarrow V$, and
its derivative $D(\nabla f)$ is the 2nd order derivative of of $f: V \rightarrow R$.
Definition: $\nabla^2 f(x) \equiv D(\nabla f(x))$
Therefore, $\nabla^2 f(x)$ is a bounded linear transformation $V \rightarrow V$.
Example : $f(x) = \frac{1}{2} ||AX - b||_{W}^2$, where A bounded linear $V \rightarrow W$
 $b \in W$, $x \in V$.
Then, $\nabla f(x) = A^*(AX - b) = A^*AX - A^*b$
and $D(\nabla f(x)) = A^*A$
So, $\nabla^2 f(x) = A^*A \in \mathcal{L}(V, V)$
In particular, if $X \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$
 $f(x) = \frac{1}{2} ||AX - b||_2^2$
Then $\nabla f(x) = A^T(AX - b)$
 $\nabla^2 f(x) = A^TA$

• Function expansion
•
$$\frac{d}{dt} f(x+tu) = \langle \nabla f(x+tu), u \rangle$$
, where $t \in \mathbb{R}$, $x, u \in V$.
because $f(x+su) = f(x+tu) + \langle \nabla f(x+tu), (s-t)u \rangle + o(1s-t)|uu|)$
 $= f(x+tu) + (s-t) \langle \nabla f(x+tu), u \rangle + o(1s-t)|uu|)$
Set $t=0$: $\frac{d}{dt} f(x+tu)|_{t=0} = \langle \nabla f(x), u \rangle$
i.e., $\left[\langle \nabla f(x), u \rangle \text{ is the directional derivative of } f(x) \text{ along } U \right]$
• Similarly,
 $\frac{d^2}{dt^2} f(x+tu) = \frac{d}{dt} \langle \nabla f(x+tu), u \rangle = \langle \nabla^2 f(x+tu) u, u \rangle$
because $\langle \nabla f(x+su), u \rangle = \langle \nabla f(x+tu), u \rangle$
 $+ \langle \nabla^2 f(x+tu) (s-t)u, u \rangle + o(1s-t)||uu||^2 \rangle$

$$= \langle \nabla f(x+tu), u \rangle + (s-t) \langle \nabla^{2} f(x+tu), u, u \rangle + o(ts-t) \rangle$$
Set $t=o; \frac{d^{2}}{dx^{2}} f(x+tu)|_{t=o} = \langle \nabla^{2} f(x) u, u \rangle.$
That is, $\langle \nabla^{2} f(x) u, u \rangle$ is the 2nd order derivative of $f(x)$
along u .

• We can similarly show that
$$\frac{2}{\partial t_{1}} \frac{2}{\partial t_{n}} f(x+t_{1}u+t_{1}v)|_{t=t_{1}=0} = \frac{2}{\partial t_{n}} \frac{2}{\partial t_{1}} f(x+t_{1}u+t_{2}v)|_{t_{1}=t_{1}=0} = \frac{2}{\partial t_{n}} \frac{2}{\partial t_{n}} f(x+t_{1}u+t_{2}v)|_{t_{1}=t_{1}=0} = \frac{2}{\partial t_{n}} \frac{2}{\partial t_{n}} f(x+t_{1}v+t_{2}v)|_{t_{1}=t_{1}=0} = \frac{2}{\partial t_{n}} \frac{2}{\partial t_{n}} f(x+t_{1}v+t_{2}v)|_{t_{1}=t_{1}=t_{1}=t_{2}=0} = \frac{2}{\partial t_{n}} \frac{2}{\partial t_{n}} f(x+t_{1}v)|_{t_{1}=$$