Ch. 2. Normed Spaces / Inner product spaces
§ 2.1. Vector spaces

- Definition: A vector space over \mathbb{R} (the real domain) is a set V together with two functions:
vector addition: $\quad t: V \times V \rightarrow V$ (i.e., $x+y$, where $x, y, 1$)
scalar multiplication: $\cdot: \mathbb{R} \times V \rightarrow V$ (i.e., $\alpha \cdot x$, where $\alpha \in \mathbb{R}, x \in V$)
that satisfying the following.
(1) Associativity of addition: $\quad x+(y+z)=(x+y)+z \quad \forall x, y, z \in V$
(2) Commutativity of addition: $\quad x+y=y+x \quad \forall x, y \in V$.
(3) Zero vector: \exists an element, denoted by 0 , in V, sit.

$$
x+0=0+x=x \quad \forall x \in V .
$$

(4) Negative vector: $\forall x \in V, \exists$ an element, denoted by $-x$, in V, s.t.

$$
x+(-x)=(-x)+x=0
$$

$$
\begin{equation*}
\forall x \in V, \quad 1 x=x . \tag{5}
\end{equation*}
$$

$\forall x \in V$ and $\alpha, \beta \in \mathbb{R}, \quad \alpha(\beta x)=(\alpha \beta) x$.

$$
\begin{equation*}
\forall x \in V \text { and } \alpha, \beta \in \mathbb{R}, \quad(\alpha+\beta) x=\alpha x+\beta x \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\forall x, y \in V \text { and } \alpha \in \mathbb{R}, \quad \alpha(x+y)=\alpha x+\alpha y \tag{7}
\end{equation*}
$$

Remark: - We can define vector space over \mathbb{C} (the complex domain) similarly.

- We will assume vector space over \mathbb{R} for default. Vector space over \mathbb{C} is used very rarely.

Example 1: \mathbb{R} is a vector space, with " t " the standard addition of real numbers and "." the standard multiplication of real numbers. Example 2: \mathbb{R}^{n} is a vector space, with " + " and "." defied by:
addition: $\forall\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right],\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right] \in \mathbb{R}^{n}, \quad\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]+\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]=\left[\begin{array}{c}x_{1}+y_{1} \\ x_{2}+y_{2} \\ \vdots \\ x_{n}+y_{n}\end{array}\right]$
scalar multiplication: $\forall \alpha \in \mathbb{R}$ and $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{R}^{n}, \quad \alpha\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}\alpha x_{1} \\ \alpha x_{2} \\ \vdots \\ \alpha x_{n}\end{array}\right]$.
Many input data can be modeled by vectors in \mathbb{R}^{n}.

- Digital sound signals of length n.
- Time series of length n.
- n different attributes/features of a single thing or object.

Example 3: All real $m \times n$ matrices is a vector space, with standard matrix addition and standard scalar multiplication.

- This vector space is the same as $\mathbb{R}^{m n}$.
- An $m \times n$ matrix can be used to represent a black-white digital image of $m \times n$ pixels.
Example 4: All 3-arrays of size $m \times n \times l$ is a vector space,
if "t" and "." is defined by

$$
\begin{gathered}
+: \forall x=\left[x_{i j k}\right]_{i=1}^{n} m_{j=1}^{l} \text { and } y=\left[y_{i j k}\right]_{i=1}^{n} m_{j=1}^{l} l_{k=1}, \\
x+y=\left[x_{i j k}+y_{i j k}\right]_{i=1}^{n} m_{j=1}^{m} l_{k=1} \\
\forall x=\left[x_{i j k}\right]_{i=1}^{n} \sum_{j=1} l_{k=1} \text { and } \alpha \in \mathbb{R}, \\
\alpha x=\left[\alpha x_{i j k}\right]_{i=1}^{n} m_{j=1} l_{k=1}
\end{gathered}
$$

- This vector space is the same as $\mathbb{R}^{m n l}$.
- An $n \times m \times 3$ 3-array can be used to model a color digital image, where $X_{i j k}$ means (i, j)-th pixel in channel k, and Channel $1,2,3$ means Red, Green, Blue channels of the image.
- An $n \times m \times l$ 3-array can be used to model a $\frac{\text { black-white }}{\text { video, }}$ where $X_{i j k}$ means the (i, j)-th pixel at k-th frame.

Example 5: Consider the set of all strings.
Define the addition by, e.g.,

$$
\text { 'I' }{ }^{\prime} \text { 'am' }=\text { 'I } a m^{\prime}
$$

and some scalar multiplication.
Then it doesn't form a vector space.

- Therefore, we cannot use vector space to model text data in this naive way.
Example 6 : The function space $C[a, b]=\{f \mid f$ is continous on $[a, b]\}$ is a vector space if we define " + " and "." by:

$$
\begin{aligned}
& +: \forall f, g \in C[a, b], \quad(f+g)(t)=f(t)+g(t), \forall t \in[a, b] . \\
& \cdot: \forall f \in C[a, b], \alpha \in \mathbb{R}, \quad(\alpha f)(t)=\alpha f(t)
\end{aligned}
$$

- $C[a, b]$ is referred to as a function space, since any vector in the vector space is a function.
- C $[a, b]$ could be the hypothesis space of a learner with one input and one output, i.e.,
$x_{i} \rightarrow ? \rightarrow y_{i}$, with $x_{i} \in[a, b]$ and $y_{i} \in \mathbb{R}$.
leave a $f \in C[a, b]$ s.t. $f\left(x_{i}\right) \approx y_{i}$ for all i.
§1.2. Normed spaces and Banach Spaces
In order to do calculus on vector spaces, we need to define 'distance, closeness between vectors.
Let V be a vector space. Let $x, y \in V$. Then, distance $(x, y)=\operatorname{distance}(x-y, y-y)=\operatorname{distance}(x-y, 0)$
distance should be shift invariant. length of $x-y$.

Therefore, to define a distance, we only need to define a length for each vector in V.
Let $x \in V$. Let $\|x\|$ be its length, called norm, which should satisfy
(1) a length should be non negative, i.e..

$$
\|x\| \geq 0 \quad \forall x \in V .
$$

Moreover, only the zero vector has a zero length, i.e.,

$$
\|x\|=0 \Leftrightarrow x=0 .
$$

(2) The length of a multiple of a vector should be the multiple of the length of the rector. i.e., $\forall \alpha \in \mathbb{R} . \quad\|\alpha x\|=|\alpha|\|x\|$

(3) Triangular inequality: the length of the direct path is the smallest

$$
\|x+y\| \leqslant\|x\|+\|y\|
$$

Definition: Let V be a vector space over \mathbb{R}. A norm on V is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that:
(1) $\|x\| \geq 0, \forall x \in V$ and $\|x\|=0 \Leftrightarrow x=0$.
(2) $\|\alpha x\|=|\alpha|\|x\|, \quad \forall x \in V$ and $\alpha \in \mathbb{R}$.
(3) $\|x+y\| \leqslant\|x\|+\|y\|, \quad \forall x, y \in V$.

Example 1: \mathbb{R} is a vector space over \mathbb{R}.
Let $\|x\|=|x| \quad \forall x \in \mathbb{R}$. Then it is a norm on \mathbb{R}. (Can you find other norms on \mathbb{R} ?)
Example 2: \mathbb{R}^{n} is a vector space over \mathbb{R}.
There are many norms on \mathbb{R}^{n}.

- 2-norm: (Euclidean norm)

$$
\|x\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

The induced distance

$$
\overbrace{y}^{x} \frac{\|x-y\|_{2}}{x}
$$

$\|x-y\|_{2}=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}$ is the Euclidean distance
由1-norm:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

The induced distance

$$
\|x-y\|_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

is known as Mahanttan distance (You can walk only horizontally and vertically)
中 ∞-norm:

$$
\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad x \cdot \xrightarrow{\|x-y\|_{\infty}}
$$

The induced distance is

$$
\|x-y\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
$$

* p-norm $(p \geq 1)$

$$
\|\chi\|_{p}=\left(\sum_{i=1}^{n}\left|\chi_{i}\right|^{p}\right)^{1 / p}
$$

- Comparison of unit balls.

- Note that $\left(\mathbb{R}^{n},\|\cdot\|_{1}\right),\left(\mathbb{R}^{n},\|\cdot\|_{2}\right),\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right), \cdots$ are all different normed spaces. So, for a given vector space, we can obtain various normed space by choosing different norms.
- Calculate the norms of $x=\binom{3}{4}$

$$
\begin{aligned}
& \|x\|_{2}=\left(3^{2}+4^{2}\right)^{1 / 2}=5 \quad\|x\|_{1}=|3|+14 \mid=7 \\
& \|x\|_{\infty}=\max \{3,4\}=4
\end{aligned}
$$

Example 3: $C[a, b]$ is a vector space over \mathbb{R}.
The 0 vector in $C[a, b]$ is the function that takes value 0 on $[a, b]$. To measure how large a function f is, we can use the following norms

$$
\|f\|_{\infty}=\sup _{x \in[a, b]}|f(x)|
$$

Then distance of two functions $f, g \in C(a, b]$
 is $\|f-g\|_{\infty}=\sup _{x \in[a, b]}|f(x)-g(x)|$.

Some other norms of $C[a, b]$ can be

$$
\begin{aligned}
& \|f\|_{1}=\int_{a}^{b}|f(x)| d x \\
& \|f\|_{2}=\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{1 / 2} \\
& \|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}
\end{aligned}
$$

To define calculus, we need first define convergent sequence.
Let V be a normed vector space.
Let $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ be a sequence in V, (i.e., $x_{k} \in V \forall K=1,2,3, \ldots$).
Let $x \in V$. We say $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ converges to x, denoted by $x_{k} \rightarrow x$, if

$$
\lim _{k \rightarrow \infty}\left\|x_{k}-x\right\|=0
$$

Example 1: Consider \mathbb{R}^{n} with $\|\cdot\|_{2}$.
Let $X_{k}=\left(\begin{array}{c}1 / k \\ \nu_{k} \\ \vdots \\ n / k\end{array}\right) \in \mathbb{R}^{n} \forall k$ and $\quad \chi=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right) \equiv 0$
Then,

$$
\begin{aligned}
\left\|x_{k}-x\right\|_{2} & =\left\|\left(\begin{array}{c}
1 / k \\
2 / k \\
\vdots \\
n_{k}
\end{array}\right)\right\|_{2}=\left(\left(\frac{1}{k}\right)^{2}+\left(\frac{2}{k}\right)^{2}+\cdots+\left(\frac{n}{k}\right)^{2}\right)^{1 / 2} \\
& =\frac{1}{k}\left(1^{2}+2^{2}+\cdots+n^{2}\right)^{\frac{1}{2}}=\frac{F(n)}{k} \\
\lim _{k \rightarrow \infty}\left\|x_{k}-x\right\|_{2} & =\lim _{k \rightarrow \infty} \frac{F(n)}{k}=F(n) \cdot\left(\lim _{k \rightarrow \infty} \frac{1}{k}\right)=0 .
\end{aligned}
$$

Therefore, $\quad X_{k} \rightarrow \chi$ as $k \rightarrow \infty$.
Example 2: Consider $C[0,1]$ with $\|\cdot\|_{\infty}$
Let $f_{k}(t)=\sin (2 \pi k t) / k^{2}$
Then, $\left\|f_{k}-0\right\|_{\infty}=\sup _{t \in[0,1]}\left(\sin (2 \pi k t) / k^{2}\right)=\frac{1}{k^{2}}$

$$
\lim _{k \rightarrow \infty}\left\|f_{k}-0\right\|_{\infty}=\lim _{k \rightarrow \infty} \frac{1}{k^{2}}=0
$$

So, $\quad f_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Unfortunately, not all normed space is not "closed" under limit operation.

Example: Consider $C[-1,1]$ with $\|\cdot\|_{1}$ (Recall $\left.\|f\|_{1}=\int_{-1}^{1}|f(t)| d t\right)$
Define f_{k} as $f_{k}(t)=\left\{\begin{array}{cc}-1 & -1 \leq t \leq-\frac{1}{k} \\ k t & \frac{1}{k} \leq t \leq 1 \\ 1 & \begin{cases}\end{cases} \end{array}\right.$ and f as $f(t)=\left\{\begin{array}{cc}-1 & -1 \leq t<0 \\ 1 & 0 \leq t \leq 1\end{array}\right.$

Then $\left\|f_{k}-f\right\|_{1}=\int_{-1}^{1} f_{k}(t)-f(t) \left\lvert\, d t=\frac{1}{k}\right.$

$$
\begin{aligned}
& \text { and } \lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{1}=\lim _{k \rightarrow \infty} \frac{1}{k}=0 . \\
& \text { So } \sqrt{f_{k} \rightarrow f} \text { as } k \rightarrow \infty \\
& f_{k} \in C[-1,1],
\end{aligned} \text { but } f \notin C[-1,1] . . ~ \$
$$

Therefore, $\left(c[-1,1],\|\cdot\|_{i}\right)$ is not complete.
We call a complete normed space a Banach space.
Examples of Banach spaces:

- \mathbb{R}^{n} with any norm
- $C[a, b]$ with $\|\cdot\|_{\infty}$
§ 1.3 Case study: Clustering, k-means, k-medians
Clustering
Suppose we are given N vectors $x_{1}, x_{2}, \cdots, x_{N} \in \mathbb{R}^{n}$
The goad of clustering is to group or partition the vectors into K groups or clusters, with the vectors in each group close to each other.

- We use \mathbb{R}^{n} because it is simple yet able to model a variety of data sets (e.9., singals, images, videos, attributes of things)
- Actually, the methods can be extended to any normed spaces.
- Applications:
- Topic discovery. Suppose the N vectors are word histograms with N documents respectively, i.e., the j-th component in X_{i} is the counts of the j-th word in document i.
A clustering algorithm patition the documents into k groups, which typically can be intepreted as groups of documents with the same topics, genre, or author.
- Patient Clustering. If $\left\{x_{i}\right\}_{i-1}^{N}$ are feature rectors associated with N patients admitted to a hospital, a clustering algorithm clusters the patient into K groups of similar patients.
- Recommendation system. A group of N people respond to ratings of n movies. A clustering algorithm can be used to cluster the people into k groups, each with similar taste.

Then we can recommend new movies liked by some one to people in the same group as $\mathrm{him} / \mathrm{her}$.

- Many other applications.

Mathematical formulation:

- Representation:

Let $C_{i} \in\{1,2, \cdots, k\}$ be the group that X_{i} belongs to. $i=1,2, \cdots, N$.
Then, group j, do noted by G_{j}, is $G_{j}=\left\{i \mid C_{i}=j\right\}$. $j=1,2, \cdots, k$.
We assign each group a representative vector, denoted by $z_{1}, z_{2}, \cdots, z_{k}$. The representative vectors are not necessarily one of given vectors.

- Evaluation :

First of all, within one specific group j G_{j}, all vectors should be close to the representative vector z_{j}. More precisely, let

$$
J_{j}=\sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|_{2}^{2}
$$

Then, J_{j} should be small.
Secondly, consider all groups, since each J_{j} is small,

$$
J=J_{1}+J_{2}+\cdots+J_{k}
$$

should be small.
Altogether, we solve the following

$$
\min _{\substack{G_{i} \cdots, \cdot G_{k} \\ z_{1}, \cdots, z_{k}}} J \Longleftrightarrow \min _{\substack{G_{1}, \cdots G_{k} \\ z_{1}, \cdots, z_{k}}} \sum_{j=1}^{k} J_{j} \Longleftrightarrow \min _{\substack{G_{1}, \cdots, G_{k} \\ z_{1}, \cdots, z_{k}}} \sum_{j=1}^{k}\left(\sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|_{2}^{2}\right)
$$

- Optimization.

We may use an alternating minimization to solve the minimization.
Step 1: Fix the representatives z_{1}, \cdots, z_{k}, find the best partitions G_{1}, \cdots, G_{k}, i.e., solve

$$
\min _{G_{1},-, G_{k}} \sum_{j=1}^{k}\left(\sum_{i \in G_{j}}\left\|X_{i}-Z_{j}\right\|_{2}^{2}\right) \cdot-\cdots(1)
$$

Step 2: Fix the groups G_{1}, \cdots, G_{k}, find the best representatives z_{1}, \cdots, z_{k}, ie., solve

$$
\min _{z_{1}, \cdots, z_{k}} \sum_{j=1}^{k}\left(\sum_{i \in G_{j}}\left\|X_{i}-z_{j}\right\|_{2}^{2}\right) \ldots(2)
$$

The two steps are repeated until convergence.

Let's find the solutions of the sub-problems (1) and (2) respectively. For (1):
finding the partition G_{1}, \cdots, G_{k} is equivalent to finding $c_{1}, c_{2}, \cdots, c_{N}$. So (1) becomes

$$
\begin{aligned}
\operatorname{cin}_{1}, c_{2}, \cdots, c_{N} & \underbrace{}_{\substack{\text { depends on } \\
c_{1} \text { only }}}\left\|x_{1}-z_{c_{1}}\right\|_{2}^{2}
\end{aligned}+\underbrace{\left\|x_{2}-z_{c_{2}}\right\|_{2}^{2}}_{\substack{\text { depends on n } \\
c_{2} \text { on ny }}}+\cdots+\underbrace{\left.\left\|x_{N}-z_{c_{N}}\right\|^{2}\right)}_{\begin{array}{c}
\text { depends } \\
\text { on } c_{N} \text { only }
\end{array}}
$$

$$
\min _{c_{i}}\left\|x_{i}-z_{c_{i}}\right\|_{2}^{2} \quad i=1,2, \cdots, N
$$

Since $c_{i} \in\{1,2, \cdots, k\}$, to get c_{i}, we only heed to compare

$$
\left\|x_{i}-z_{1}\right\|_{2}^{2},\left\|x_{i}-z_{2}\right\|_{2}^{2}, \cdots,\left\|x_{i}-z_{k}\right\|_{2}^{2}
$$

and choose the minimum from it. i.e.,

$$
C_{i}=\arg \min _{j \in\{\{, \cdots\}}\left\|\mid x_{i}-z_{j}\right\|_{2}^{2} \quad, \quad i=1,2, \cdots, k .
$$

In other words,
χ_{i} is assigned to the group whose representative vector is the closest to χ_{i}.

For (2): It is rewritten as

$$
\min _{z_{1},-z_{k}}(\underbrace{\sum_{i \in G_{1}}\left\|x_{i}-Z_{1}\right\|_{2}^{2}}_{\begin{array}{c}
\text { depends on } \\
\text { only }
\end{array}}+\underbrace{\sum_{i \in G_{2}}\left\|x_{i}-z_{2}\right\|_{2}^{2}}_{\begin{array}{c}
\text { depends on } \\
z_{2} \text { only }
\end{array}}+\cdots+\underbrace{\sum_{i \in G_{k}}\left\|x_{i}-Z_{k}\right\|_{2}^{2}}_{\begin{array}{c}
\text { depends on } \\
Z_{k} \text { only }
\end{array}})
$$

Obviously, it is equivalent to minimize each term independently,
i.e., solve K independent problems.

$$
\min _{z_{j}}\left(\sum_{i \in G_{j}}\left\|X_{i}-z_{j}\right\|_{2}^{2}\right), \quad j=1,2, \cdots, k .
$$

Note that

$$
\left.\begin{array}{l}
\sum_{i \in G_{j j}}\left\|x_{i}-z_{j}\right\|_{2}^{2}=\sum_{i \in G_{j}} \sum_{l=1}^{n}\left(\chi_{i l}-z_{j l}\right)^{2} \quad\left(\begin{array}{ll}
\chi_{i l} & \text { are } l \text { - th component } \\
z_{j l} & \text { of } \\
& \chi_{i} \\
z_{j}
\end{array} \quad\right. \text { respectively }
\end{array}\right)
$$

Feal term is this sumniation are independent again.
Thus, $\min _{z_{j}}\left(\sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|_{2}^{2}\right) \Leftrightarrow \min _{z_{j l}} \sum_{i \in G_{j}}\left(x_{i l}-Z_{j l}\right)^{2}, \quad l=1,, \cdots, \cdots$.

One variable minimization.
Taking derivative w, rit. $Z_{j l}$ and setting it to 0 , we obtain that the solution $Z_{j l}$ satisfies

$$
\begin{aligned}
& 2 \sum_{i \in G_{j}}\left(Z_{j l}-\chi_{i l}\right)=0 \\
& \Rightarrow \quad Z_{j l}=\left(\sum_{i \in G_{j}} \chi_{i l}\right) /\left|G_{j}\right| \quad\left(\left|G_{j}\right| \text { is the number of }\right) \\
& l=1,2, \cdots, n .
\end{aligned}
$$

In vector form,

$$
\left(\begin{array}{c}
z_{j 1} \\
z_{j 2} \\
\vdots \\
z_{j n}
\end{array}\right)=\frac{1}{\left|G_{j}\right|} \cdot \sum_{i \in G_{j}}\left(\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i n}
\end{array}\right) \Leftrightarrow z_{j}=\frac{1}{\left|G_{j}\right|}\left(\sum_{i \in G_{j}} x_{i}\right)
$$

In other words,
\bar{Z}_{j} is the mean of all vectors in G_{j}.

Altogether, we get the following clustering algorithm.
Input: $\chi_{1}, \chi_{2}, \cdots, \chi_{N} \in \mathbb{R}^{n}$.
Output: $c_{1}, c_{2}, \cdots, c_{N}$ and $z_{j}, j=1, \cdots, k$.
Initialization: Initialize $z_{1}, z_{2}, \cdots, z_{k}$ by choosing k vectors
from $x_{1}, x_{2}, \cdots, x_{N}$ randomly.
Step 1: Given $z_{1}, z_{2}, \cdots, z_{k}$, compute

$$
c_{i}=\arg \min _{j \in\{1,2, \cdots, k\}}\left\|x_{i}-z_{j}\right\|_{2}^{2} . \quad i=1,2, \cdots, N .
$$

and define

$$
G_{j}=\left\{i \mid c_{i}=j\right\}, \quad j=1.2, \cdots, k .
$$

Step 2: Given $G_{1}, G_{2}, \cdots, G_{k}$, compute

$$
Z_{j}=\frac{1}{\left|G_{j}\right|}\left(\sum_{i \in G_{j}} \chi_{i}\right)
$$

Go back to step 1.

This algorithm is know as "K-means" algorithm, because it computes K means of vectors at step 2 .
K - medians Algorithm
In k-means, the Euclidean norm is used. We can replace it by 1-norm. We solve

$$
\min _{\substack{G_{1}, \cdots, G_{k} \\ z_{1}, \cdots, z_{k}}} \sum_{j=1}^{k}\left(\sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|_{1}\right)
$$

The numerical solver is
Step 1: Fix z_{1}, \cdots, z_{k}, solve

$$
\min _{G_{1}, \cdots, G_{k}} \sum_{j=1}^{k}\left(\sum_{i \in G_{j}}\left\|X_{i}-z_{j}\right\|_{1}\right) .
$$

Similar to the discussion in k-means, the solution is

$$
C_{i}=\underset{j \in\{, 2, \cdots, k\}}{\operatorname{argmin}}\left\|x_{i}-z_{j}\right\|_{1}, \quad i=1,2, \cdots, N .
$$

and $G_{j}=\left\{i \mid C_{i}=j\right\}$.
Step 2: Fix $G_{1}, G_{2}, \cdots, G_{k}$, solve

$$
\min _{z_{1},-, z_{k}} \sum_{j=1}^{k}\left(\sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|_{1}\right)
$$

Similar to the discussion in k-means, it is decomposed into K sub problems

$$
\min _{z_{j}} \sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|_{1} \quad j=1,2, \cdots, k .
$$

It is well known (Galileo) that the solution is

$$
Z_{j}=\operatorname{median}_{i \in G_{j}}\left(\chi_{i}\right)
$$

Where $\underset{i \in G_{j}}{\operatorname{mediam}}\left(X_{i}\right)$ takes component-wise median.
This algorithm is called "k-median" algorithm.
\$1.4 Inner product/Hilbert space
Norms give only metrics, ie, measuring the distance of two vectors. However, in many applications, the "angel" of two vectors matter.

- For example; two images x, y showing the same scene with different lights.

For simplicity, we may assume, say, $y=\frac{1}{2} \times$ ($\left.\begin{array}{c}\text { the first image is with } 100 \% \\ \text { hight, and the second } 50 \%\end{array}\right)$ then $\|x-y\|=\frac{1}{2}\|x\|$ not small.
but x, y are from the same scene.

- We use inner product for "angel(" of two vectors

Definition: A function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ is called an inner product on the vector space V over \mathbb{R} if
(1) $\forall x \in V, \quad\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Leftrightarrow x=0$
(2) $\left\langle\alpha x_{1}+\beta x_{2}, y\right\rangle=\alpha\left\langle x_{1}, y\right\rangle+\beta\left\langle x_{2}, y\right\rangle \quad \forall \alpha, \beta \in \mathbb{R}, x_{1}, x_{2}, y \in V$.
(3) $\langle x, y\rangle=\langle y, x\rangle$

Remark: 1. By (2) and (3), $\left\langle x, \alpha y_{1}+\beta y_{2}\right\rangle=\alpha\left\langle x, y_{1}\right\rangle+\beta\left\langle x, y_{2}\right\rangle \quad v^{\alpha,}, \beta \in \mathbb{R}$ Therefore, $\langle\cdot, \cdot\rangle$ is a bilinear function, ie., it is linear with respect to one of the variable with the other fixed.
2. For inner product of vector spaces on (1, we only need to change (3) to
(3) $\langle x, y\rangle=\overline{\langle y, x}\rangle$, where - stands for complex conjugate.

Example 1: \mathbb{R}^{n} is a vector space. We can define an inner product as

$$
\begin{aligned}
\langle x, y\rangle & =x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}, \text { where } x=\left[\begin{array}{l}
x_{1} \\
x_{n}
\end{array}\right] \text { and } y=\left[\begin{array}{l}
y_{1} \\
y_{n} \\
y_{n}
\end{array}\right] . \\
& \left(\equiv x^{\top} y\right)
\end{aligned}
$$

Example 2: Another inner product in \mathbb{R}^{n} is as follows.
Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite (cpd)
(Recall sped means: $A^{\top}=A$ and $x^{\top} A x>0 \quad \forall x \neq 0$)
Then $\langle x, y\rangle_{A}=x^{\top} A y$ defines an inner product in \mathbb{R}^{n}, because
(1) $\langle x, x\rangle_{A}=x^{\top} A x \geq 0$ and $\langle x, x\rangle_{A}=0 \Leftrightarrow x^{\top} A x=0 \Leftrightarrow x=0$.
(2) $\left\langle\alpha x_{1}+\beta x_{2}, y\right\rangle_{A}=\left(\alpha x_{1}+\beta x_{2}\right)^{\top} A y=\alpha x_{1}^{\top} A y+\beta x_{2}^{\top} A y$

$$
=\alpha\left\langle x_{1}, y\right\rangle_{A}+\beta\left\langle x_{2}, y\right\rangle_{A} .
$$

(3) $\langle x, y\rangle_{A}=x^{\top} A y=\left(x^{\top} A y\right)^{\top}=y^{\top} A^{\top} x=y^{\top} A x=\langle y, x\rangle_{A}$.

Example 3: In $C[a, b]$, we can define an inner product as

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x, \quad \forall f, g \in C[a, b]
$$

Cauchy-Schwartz Inequality:
If $\langle\cdot, \cdot\rangle$ is an inner product on V, then, for any $x, y \in V$,

$$
|\langle x, y\rangle|^{2} \leqslant\langle x, x\rangle\langle y, y\rangle
$$

The equality holds true if and only if $x=\alpha y$ for some $\alpha \in \mathbb{R}$.
proof. Let $\lambda \in \mathbb{R}$ be an arbitrary number

$$
\begin{aligned}
0 \leq\langle x+\lambda y, x+\lambda y\rangle & =\langle x, x\rangle+\lambda\langle y, x\rangle+\lambda\langle x, y\rangle+\lambda^{2}\langle y, y\rangle \\
& =\langle x, x\rangle+2 \lambda\langle x, y\rangle+\lambda^{2}\langle y, y\rangle
\end{aligned}
$$

Thus, $\quad \lambda^{2}\langle y, y\rangle+2 \lambda\langle x, y\rangle+\langle x, x\rangle \geqslant 0 . \quad \forall \lambda \in \mathbb{R}$.
The left is a quadratic function of λ and always non-negative.
There is at most one root of the quadratic function.
So, $\quad(2\langle x, y\rangle)^{2}-4\langle y, y\rangle\langle x, x\rangle \leqslant 0$

$$
\Rightarrow \quad\langle x, y\rangle^{2} \leq\langle x, x\rangle\langle y, y\rangle
$$

 So $b^{2}-4 a c \leq 0$.

Finally, when $\langle x, y\rangle^{2}=\langle x, x\rangle\langle y, y\rangle$, there is a root, i.e., \exists a unique $\lambda \in \mathbb{R}, \lambda^{2}\langle y, y\rangle+2 \lambda\langle x, y\rangle+\langle x, x\rangle=0$
\Uparrow
\exists a unique $\lambda \in \mathbb{R}, \quad\langle x+\lambda y, x+\lambda y\rangle=0$
\mathbb{N}
\exists a unique $\lambda \in \mathbb{R}, \quad x+\lambda y=0$

$$
\exists \text { a unique } \lambda \in \mathbb{R}, x=-\lambda y
$$

With the Cauchy-Schwartz inequality, we can show that:

$$
\|x\|=\left(\langle x, x)^{1 / 2} \text { defines a norm. - Called "norm induced }\right. \text { by the inner product }
$$ by the inner product".

proof. (1) $\|x\|=(\langle x, x\rangle)^{1 / 2} \geq 0$ and $\|x\|=(\langle x, x\rangle)^{1 / 2}=0 \Leftrightarrow x=0$.
(2) $\|\alpha x\|=(\langle\alpha x, \alpha x\rangle)^{1 / 2}=\left(\alpha^{2}\langle x, x\rangle\right)^{1 / 2}=|\alpha|\|x\|$
(3) $\|x+y\|_{2}^{2}=\langle x+y, x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle$

$$
\begin{aligned}
& =\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle \\
& \left.\leqslant\|x\|^{2}+\|y\|^{2}+2\|x\|\|y\| \quad \begin{array}{l}
\text { Note that Cacuachy-Schworts } \\
\text { becomes } \\
|\langle x, y\rangle| \leq\|x\|\|y\|
\end{array}\right) \\
& =(\|x\|+\|y\|)^{2}
\end{aligned}
$$

Cauchy Schwartz is restated as:

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

"Angels" in inner product spaces.
The equality " $=$ " is attained if and only if x and y are aligned exactly, which should have the least angel. Therefore, we use the ratio of the two sides of Cauchy Schwartz $\quad \frac{\langle x, y\rangle}{\|x\|\|y\|}$ to quantitize the closeness to exact alignment. Hence to
define the angels between x and y.

- When $x=\alpha y$ with $\alpha>0$,

$$
\frac{\langle x, y\rangle}{\|x\|\|y\|}=1 \quad \vec{x} y
$$

Since x and y are in the same direction,
It is naturally to define $<(x, y)=0$

- When $x=\alpha y$ with $\alpha<0$

$$
\frac{\langle x, y\rangle}{\|x\|\|y\|}=-1 \quad \stackrel{\longleftrightarrow}{x} y
$$

Since x and y are in the opposite direction, it is naturally y to define $\langle(x, y)=\pi$.

- We define $\cos \left\langle(x, y)=\frac{\langle x, y\rangle}{\|x\|\|y\|}\right.$
or, equivalently,

$$
\angle(x, y)=\arccos \frac{\langle x, y\rangle}{\|x\|\|y\|}
$$

This definition Coincides with the above two cases and the vectors in \mathbb{R}^{2} or \mathbb{R}^{3} equipped with the standard inner product.

Orthogonality: Let V be an inner product space.

- When the angel of x and y is $\frac{\pi}{2}$, we call they are orthogonal, denoted by $x \perp y$, i.e.,

$$
x \perp y \text { if }\langle x, y\rangle=0
$$

- When $x \perp y$, they are least relevant.
- Pythagoras' theorem: Let x, y be two vectors in an inner product space.

If $x \perp y$, then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$
proof. $\|x+y\|^{2}=\langle x+y, x+y\rangle$

$$
\begin{aligned}
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

- Parallelogram law: $\forall x, y \in H$ \qquad an inner product space,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

proof. $\|x+y\|^{2}+\|x-y\|^{2}$

$$
\begin{aligned}
& =\langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
& =\langle x, x\rangle+\langle y, x\rangle+\langle x, y\rangle+\langle y, y\rangle+\langle x, x\rangle-\langle y, x\rangle-\langle x, y\rangle+\langle y, y\rangle \\
& =2\|x\|^{2}+2\|y\|^{2}
\end{aligned}
$$

Hilbert space:
A Hilbert space is a Banach space in which the norm is induced by an inner product.

Example 1: \mathbb{R}^{n} with inner product

$$
\langle x, y\rangle=x^{\top} y
$$

is a Hilbert space.
Example 2: \mathbb{R}^{n} with inner product
$\langle x, y\rangle_{A}=x^{\top} A y$, where A is an spd matrix is a Hilbert space. The norm on this space is

$$
\|x\|_{A}=\left(x^{\top} A x\right)^{1 / 2}
$$

Example 3: $C[a, b]$ with inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

is NOT a Hilbert space, because it is not complete. ($\left.\begin{array}{c}\text { Roughly, 'the' 'limit } \\ \text { of a convergent } \\ \text { sequence may } \\ \text { not be in cta,b] }\end{array}\right)$
To complete $C[a, b]$ under the norm $\|\cdot\|=(\langle\cdot, \cdot\rangle)^{1 / 2}$, we need to extend the Riemmanian integral to the so-called Lebesgue integral, and the resulting Hilbert space is $L^{2}(a, b)$.

In the following, we will consider calculus on Hilbert/Banach spaces.
§ 1.5 Case Study: Kernel trick, Kernel k-means The k-means will not work for the following examples

Recall in a chastering, we want to group $x_{1}, x_{2}, \cdots, x_{N} \in \mathbb{R}^{n}$ into k groups.
The k-means algorithm works like:
Initialize $z_{1}, z_{2}, \cdots, z_{k}$
Step 1: Given $z_{1}, z_{2}, \cdots, z_{k}$, update the groups G_{1}, \cdots, G_{k} by
(1) for each X_{i}, assign C_{i}, the group that X_{i} belongsto, by

$$
c_{i}=\arg _{j \in\{i \cdots ; k\}}\left\|X_{i}-z_{j}\right\|_{2}^{2}
$$

(2) Then $G_{j}=\left\{i \mid C_{i}=j\right\}$, for $j=1,2, \cdots, k$.
step 2: $G_{i v e n} G_{1}, \cdots, G_{k}$, update their representives by

$$
z_{j}=\frac{1}{\left|G_{j}\right|}\left(\sum_{i \in G_{j}} x_{i}\right) \text {, for } j=1,2, \cdots, k \text {. }
$$

To modify k-means to those "curved" data sets in \mathbb{R}^{n}
we use a transform to "un-curve" the data sets in a Hilbert space.
Let $\phi: \mathbb{R}^{n} \rightarrow H$

$\phi\left(x_{i}\right)$ is called the feature of x_{i}
ϕ is called the feature map
H is called the feature space

Then we apply k-means to $\phi\left(x_{1}\right), \phi\left(x_{2}\right), \ldots, \phi\left(x_{N}\right)$ in H.
Let z_{1}, \cdots, z_{k} be the representative vectors in H.
step 1: Given z_{1}, \cdots, z_{k},

$$
c_{i}=\arg _{j \in\{1,2, i, k\}}\left\|\phi\left(x_{i}\right)-z_{j}\right\|^{2}, \quad i=1,2, \cdots, N .
$$

and

$$
G_{j}=\left\{i \mid c_{i}=j\right\}, \quad j=1,2, \cdots, k .
$$

step 2: Given G_{1}, \cdots, G_{k},

$$
z_{j}=\frac{1}{\left|G_{j}\right|}\left(\sum_{i \in G_{j}} \phi\left(x_{i}\right)\right)
$$

Repeat.

However, finding the feature map ϕ is not easy, because ϕ depends on the shape of $X_{1}, x_{2}, \cdots, X_{v}$, which generally is very complicated.

The good news is that:
There is no need to know ϕ explicitly in the k-means algorithm
This is seen as in below:

- First of all, since we care only the groups of X_{1}, \cdots, X_{N}, we only need to know G_{1}, \cdots, G_{k}. The representatives z_{1}, \cdots, z_{k} are only intermediate.
Therefore, we can eliminate z_{1}, \cdots, z_{k} in the k-means algorithm.
(1) $C_{i}=\arg \min _{j \in\{, 2, \cdots,-k\}}\left\|\phi\left(x_{i}\right)-\frac{1}{\left|G_{j}\right|} \sum_{l \in G_{j}} \phi\left(x_{\ell}\right)\right\|^{2}, i=1,2, \cdots, N$.
(2) $G_{j} \leftarrow\left\{i \mid c_{i}=j\right\}, \quad j=1,2, \cdots, k$.
- Now, only (1) involves the feature mapping ϕ. Since H is a Hilbert space, we can expand the norm in (1) by

$$
\begin{aligned}
& \left\|\phi\left(x_{i}\right)-\frac{1}{\left|G_{j}\right|} \sum_{l \in G_{j}} \phi\left(x_{l}\right)\right\|^{2} \\
= & \left\langle\phi\left(x_{i}\right)-\frac{1}{\left|G_{j}\right|} \sum_{l \in G_{j}} \phi\left(x_{l}\right), \phi\left(x_{i}\right)-\frac{1}{\left|G_{j}\right|} \sum_{l \in G_{j}} \phi\left(x_{l}\right)\right\rangle \\
= & \left\langle\phi\left(x_{i}\right), \phi\left(x_{i}\right)\right\rangle-\frac{2}{\left|G_{j}\right|} \sum_{l \in G_{j}}\left\langle\phi\left(x_{i}\right), \phi\left(x_{l}\right)\right\rangle \\
& +\frac{1}{\left|G_{j}\right|^{2}} \sum_{l \in G_{j}} \sum_{l=G_{j}}\left\langle\phi\left(x_{l}\right), \phi\left(x_{l}\right)\right\rangle
\end{aligned}
$$

We see that
Only inner products in the feature space are involved.
Therefore,
An explicit expression of ϕ is NOT necessary.

Kernel trick:
Instead of defining $\phi(x)$ explicitly, we define a kernel function $K(x, y)$, which satisfies $K(x, y)=\langle\phi(x), \phi(y)\rangle$.
The kernel function $K(x, y)$ can be seem as an $\frac{\text { explicit }}{\text { quantification of }}$ similarity of x and y.

Not all function $K(x, y)$ satisfying $K(x, y)=\langle\phi(x), \phi(y)\rangle$ for some feature map ϕ. (Example: $k(x, y)=-1$ is not good because Which function $K(x, y)$ can be an inner product $\langle\phi(x), \phi(y)\rangle$ fo some feature mapping ϕ ?

- First of all, inner product property

$$
K(x, y)=\langle\phi(x), \phi(y)\rangle \stackrel{\downarrow}{-}\langle\phi(y), \phi(x)\rangle=K(y, x) .
$$

(We say $K(\cdot, \cdot)$ is symmetric if $K(x, y)=K(y, x)$ for all $x, y \in \mathbb{R}^{n}$).

- Secondly, let $y_{1}, y_{2}, \cdots, y_{m}$ be m vectors in \mathbb{R}^{n}, then, for any $c=\binom{c_{1}^{\prime}}{c_{i}^{2}} \in \mathbb{R}^{m}$,

$$
\left\langle\sum_{i=1}^{m} c_{i} \phi\left(y_{i}\right), \sum_{i=1}^{m} c_{i} \phi\left(y_{i}\right)\right\rangle \geq 0 \quad \text { (By inner product property) }
$$

On the other hand,

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{m} c_{i} \phi\left(y_{i}\right), \sum_{i=1}^{m} c_{i} \phi\left(y_{i}\right)\right\rangle=\left\langle\sum_{i=1}^{m} c_{i} \phi\left(y_{i}\right), \sum_{j=1}^{m} c_{j} \phi\left(y_{j}\right)\right\rangle \\
& \underline{\geq} \sum_{i=1}^{m} \sum_{j=1}^{m} c_{i} c_{j}\left\langle\phi\left(y_{i}\right), \phi\left(y_{j}\right\rangle\right. \\
& \begin{array}{l}
\text { By inner product } \\
\text { property. }
\end{array}=\sum_{i=1}^{m} \sum_{j=1}^{m} c_{i} c_{j} K\left(y_{i}, y_{j}\right)
\end{aligned}
$$

In other words, the matrix \vec{P} is symmetric positive semidefinite.

We say a function $K(\cdot, \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is symmetric positive semi-definite if:
i) $K(x, y)=K(y, x) \quad \forall x, y \in \mathbb{R}^{n}$
ii) For any m and any vectors $y_{1}, y_{2}, \cdots, y_{m} \in \mathbb{R}^{n}$, the matrix

$$
\left[\begin{array}{ccc}
k\left(y_{1}, y_{1},\right. & k\left(y_{1}, y_{2}\right) & \cdots \\
k\left(y_{1}, y_{m}\right) \\
\left.k y_{2}, y_{1}\right) & k\left(y_{2}, y_{2}\right) & \cdots \\
\vdots\left(y_{m},\right. & & \vdots\left(y_{2}, y_{m}\right) \\
k\left(y_{1}, y_{1}\right) & k\left(y_{m}, y_{2}\right) & \vdots \\
k & k\left(y_{m} y_{m}\right)
\end{array}\right]
$$

is symmetric positive semi-definite.

Mercer's theorem tells us that: If a kernel function $K(\cdot, \cdot)$ is symmetric positive semi-definite, then there exists a feature map ϕ such that $k(x, y)=\langle\phi(x), \phi(y)\rangle$

Some popular kernels:
(1) $K(x, y)=x^{\top} y \quad(\phi(x)=x$. No transform $)$
(2) $k(x, y)=\left(x^{\top} y\right)^{\alpha}$ polynomial kernels
(3) $k(x, y)=e^{-\frac{\|x-y\|_{2}^{2}}{\sigma^{2}}}$ Gaussian kernel

Kernel k-means algorithon

- choose a kernel function $K(\cdot, \cdot)$
- Initialize $G_{1}, G_{2}, \cdots, G_{k}$ by, e.g, one step of k-means.
\rightarrow - Set

$$
c_{i}=\arg \min _{j \in\left\{l_{1}, j, k\right\}}\left(K\left(x_{i}, x_{i}\right)-\frac{2}{\left|G_{j}\right|} \sum_{l \in G_{j}} K\left(x_{i}, x_{l}\right)+\frac{1}{\left|G_{j}\right|^{2}} \sum_{l \in G_{j}} \sum_{l \in G_{j}} K\left(x_{l_{1},} x_{l_{2}}\right)\right)
$$

for $i=1,2, \cdots, N$.

- update $G_{1}, G_{2}, \cdots, G_{k}$ by

$$
G_{j}=\left\{i \mid C_{i}=j\right\} \text {, for } j=1,2, \cdots, k \text {. }
$$

go back and repeat

The kernel k-means works for some datasets for which. K-means fail.

Example:

If we use Gaussian kernel $k(x, y)=e^{-\frac{\|\left(x-y \|^{2}\right.}{\sigma^{2}}}$ then

- $K\left(x_{i}, x_{i}\right)=e^{-\frac{-\left|x_{i}-x_{i}\right|_{2}}{\sigma i}}=1$
- so all $\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)$ are on unit sphere in H.
- $K\left(x_{i}, x_{j}\right) \begin{cases}\approx 0 & \text { if }\left\|x_{i}-x_{j}\right\|_{2} \text { is large } \\ \approx 1 & \text { if }\left\|x_{i}-x_{j}\right\|_{2} \text { is small. }\end{cases}$
- So $\phi\left(x_{i}\right), \phi\left(x_{j}\right)$ are orthogonal in H if $\left\|x_{i}-x_{j}\right\|_{2}$ large.
- $\phi\left(x_{i}\right) \approx \phi\left(x_{j}\right)$ in H if $\left\|x_{i}-x_{j}\right\| \operatorname{smal}(l$.

Therefore,

Thus, $\frac{\text { Kernel }}{k-\text { means }}$ works for this data set.

