MATH 4033 e Spring 2018 e Calculus on Manifolds
Problem Set #4 e Generalized Stokes” Theorem e Due Date: 06/05/2018, 11:59PM

1. Given that M is a smooth m-manifold without boundary, and N is a smooth n-manifold
with boundary. Show that the product manifold M x N is a smooth (m + n)-manifold
with boundary, and that o(M x N) = M x oN.

Solution: Let {F,} be a family of local parameterizations of M, {Gg} and {G,} be
families of interior and boundary types of local parameterizations of N such that

Fo:Uy CR" - M
Gg:VgCR"— N
Gy:V,CR} =N

and that the transition function

GsloGy  Gz'oG, G,

v ©Gp Cﬂ;lo@%

are smooth on the overlapping domain for any B, g, ¥ and /. Clearly, {U, x Vj, U, x
V., } is a covering of M x N. Now consider

Fox Gp: Uy X Vy CR™" 5 M x N
Fox Gg: Uy x Vy CRY™ — M x N,

check that

are smooth for all w, &/, B, B’, ¥ and /. Thus, the product manifold M x N is a smooth
(m + n)-manifold with boundary. Also, we have

d(M x N)

:U{FIX X G’y(uli' v Iumlﬁll. o /5n71/0> : <M1,‘ o 1”711) S uﬂc/ (51/' te /51171/0) S V')/}
L2%4

:U{Fa(ul/' T /um) X G’}/(El/' T /51’!—1/0)}
%y

=UJ{Feur, - um)} x | JGy (T, -+, Tn1,0)}
o i

=M x ON

2. Prove the following about orientability:

(a) Show that the n-dimensional sphere S" is orientable.
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Solution: We regard n-dimensional sphere S” as a hypersurface in R"*!. Clearly,
the unit outward normal vector at point x is x itself which is continuous on the
whole §". Hence, 5" is orientable.

Alternatively, one can argue by observing that the stereographic atlas of 5" con-
sists of only two parametrizations F; and F_ whose overlap is connected. Hence,
one can always rearrange the variables of say F_ to guarantee that det D(F7' o
F_) > 0 on the overlap.

(b) Show that the Klein bottle defined in HW2 is not orientable.

Solution: Consider the two parametrizations of R?/ ~:
Gy :(0,1) x (0,1) = R?/ ~ Gg: (0,1) x (0.5,1.5) — R*/ ~
(¥a, Ya) = [(Xas Ya)] (xp,yp) = [(xp,yp)]
where the equivalence relation ~ defined on R?:
(xy)~(y) <= (xy)=((-1)"x+m, y+n) for some integers m and .
From HW 2, we have

G510 Galta o) = (1= X, Ya+1) %f (x4, ¥a) € (0,1) x (0,0.5) ‘
(xa/yoc) lf (xa,ya) € (0, 1) X (05,1)
which implies
-1 0
0 1
1 G.) =
p oG 10
01

] if (x4, y4) € (0,1) x (0,0.5)
D(G
] if (x4, y2) € (0,1) x (0.5,1)

such that

_ -1 if (v ya) € (0,1) x (0,05)
det (D(Gy" 0 Go)) = {1 if (x,y2) € (0,1) x (0.5,1)

To complete the proof that the Klein bottle is non-orientable, we assume on the
contrary that there exist a non-vanishing smooth 2-form w globally defined on
R2/ ~. In terms of local coordinates, we have

W = Qadxy Ndx,
w = §0l5 dxﬁ /\dyﬁ

9 9
09Xy’ Yy

domain (0,1) x (0,1), or negative on the whole domain. Similar for w(%, %).

As the domain of G, is connected, w( ) is either positive on the whole
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WLOG assume w(ﬁ, W) > 0 and “’(axﬁ' s ) < 0 (the other cases are similar).
Then, on the overlap of the two coordinate systems, we first have:

O<w J 9 =
0x,” Yy = P

0>w L
axg yp) 7

Moreover, by change-of-coordinates, we also have:

3(xs, .
Wxpyp) . % _ gerp(G:?

0 Gy),
a(xoc/]/tx) P P Dé)

¢o = @pdet

showing that det D(Glg1 0 G,) < 0 on everywhere of the overlap, which contra-
dicts to our computations. Hence, the Klein bottle is not orientable.

(c) Show that the tangent bundle TM of any smooth manifold M must be orientable (no
matter whether M is orientable or not).

Solution: Let F(uy,--- ,uy,) : U — O be a local parametrization of M, the in-
duced local parametrization F : U x R" — TM of the tangent bundle TM is

0 0
P((“l/' /u}’l/all"' /an) = (F(ull /uﬂ)/ala—ul_’_—f_anE) € TM-

Let G(u1,- -+ ,uy) : U — O be another local parametrization of M, the induced
local parametrization G : U x R" — TM of the tangent bundle TM is

G((Ul,"' ,Un’all... ,an) — <G(Ul,“' ’Un)’ali+...+ani) [= TM'

001 duy,

Then,

~ ~ dv 0V

-1 = (g bkt S b

G 'oF (G oF(uy,---,uy),a auj' ,a Bu]->

implies
~ _ -1
detD(G 1o F) = det [D(G . °F) D(G—Ol OP)} .

Hence, det D(G 1o F) = (D(G o 1—“))2 > 0since G~! o Fis invertible. Therefore,
TM is orientable.

(d) A complex manifold M?" is a smooth manifold equipped with an atlas {F, : U, C
C" — M?"} such that the transition functions are holomorphic, i.e. by writing
(ug +ivy, ..., uy +iv,) = FEl o Fo(x1 + iy, ..., %, +iyn), each uy and vy are (real)
differentiable functions of (x1,y1, ..., Xs, ¥x), and the Cauchy-Riemann equations are
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satisfied:

du _ 9v dux _ _ 9%
oxj 9y dyj 0%

foranyk,j € {1,...,n}. Show that any complex manifold must be orientable.

Solution: Let

A:a(u]_,"‘,l/ln> andB:a(vli"'/vn)'
a<X1,“‘ /xl’l) a(xll"' 1xn>
By the Cauchy-Riemann equations, we have
_ A —B
D(FﬁloFa):[B A].

Now we consider a matrix

p— |l il it =L I
—il, ’

I, —il, T2 il,
then
_ . 1[L, i, 1[A -B][ L I A+iB 0
1 1_ ~|In n n n| _
PD(F"oFu)P _z[ln —iln] [B A] [—i[n iI,J [ 0 A—z’B]'
Hence,

det D(F;" o Fy) = det (PD(F;" o F)P™Y)

A+1iB 0

0 A—iB
= det(A + iB) det(A — iB)
= |det(A +iB)|?

:det[

On the other hand, by chain rule, we have

. 8(u1+i01,---,un—|—ivn)>
det(A +iB) = det <
( ) a(xll"' /xn)

(a(u1 +ivy, -, Uy +z’vn)>
= det - -
o(x1+1iyr, -+, Xn +iyy)

= det <D(F[;1 o F,X))
# 0,

since Fgl o F, is invertible. Thus, we obtain

detD(F;' oFy) = |det(A +iB)[> > 0

which implies any complex manifold must be orientable.

3. Let w = xdy Adz + ydz Adx + zdx A\ dy be a 2-form on R5.
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(a) Let S? be the unit sphere in IR® centered at the origin. Compute directly the integral:

fow
SZ

where ¢ : $2 — R? is the inclusion map.

Solution: Let F(p,0) = (sinpcos,sinpsinf,cosp) be a parametrization of S2.
Then we have

Fw=1"(xdy Ndz+ydz Ndx +zdx A dy)
=sinpdp N d6f.

2w pm
/ Fw= / / sinp dpdf = 4.
g2 o Jo

(b) Let = be a compact, orientable, simply-connected regular surface in R® without
boundary, and : : ¥ — R3 be the inclusion map. Using generalized Stokes’ The-

orem, show that:
1 / .
— | fw
3J/s

is equal to the volume of the solid D enclosed by 2.

Hence, we have

[Remark: You may assume without proof that such ¥ must enclose a solid D, and
that > = 0D.]

Solution: We first compute

w=xdyANdz+ydz Ndx+zdx \Ndy
dw =dx Ndy Ndz +dy Ndz Ndx +dz Ndx Ndy
=3dxNdyNdz

By Stokes” Theorem, we obtain

1 t*w—l/dw
3 Js=ap 3Jp
:/dx/\dy/\dz
D

= Volume of D.

4. Let w be the n-form on R"™1\ {0} defined by:

n+l . . .
Y (D) adxt A Adx T AT A AT
i=1

1
|X‘Tl+1

where x = (x1,...,x,41) and |x| = \/x%+---+x%+l.
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n

(a) Let::S" — R"*! be the inclusion of the unit n-sphere 5. Show that / fw # 0.

Solution: First note that we cannot apply Stokes” Theorem on directly on *w
with M = {x : |x| < 1} and dM = 5", since w is not smooth at the origin. We
proceed by direct computations using higher-dimensional spherical coordinates.
Note that we only have to compute the integral of one term only, say:

1

|X|T+1xn+1 dxl Ao Adx”

using the coordinates:

X1 = cos ¢y
X2 = sin ¢y cos ¢y

X3 = sin ¢ cos ¢3

Xp = sing; - - - sin¢g,_1 cos ¢y,

Xp41 = Singy - - -sing,_1 sin¢y,

where ¢1,...,¢,—1 € (0,77) and ¢, € (0,27). By direct computations, one gets:

1 1
l* (Wxn+1 dx /\ AR /\ d.xn>

=singy - - - sing,_1 singy, (—sing; dpr) A (—singy singpddo) A - -
A (—sing; - - -sin¢gy,_1sin¢y,)

= (—1)"sin’ ¢y sin’ ¢, - - - sin’ ¢, _1 sin” ;.

Note that many terms were gone after taking wedge products, and the above is
the only term survived. We denote ? above as a positive integer which we do not
care its exact value. Integrating over 5", we get:

1
/nl* <’X|T+1xn+1dxl/\"‘/\"'/\dxn)

2t o T
= / / e / (=" sin’ 1 sin’ 2 sin’ Pn—1 sin? Pndprdey - - - dpy
0 0 0

27T
Since sin ¢y, ..., sin¢,_1 > 0on (0, 7), and / sin® ¢n dpn > 0, we conclude that
0

the above integral is non-zero.

Note that the unit sphere is reflectional symmetric, hence is invariant under the
transformation @ : R"*! — R"*! taking x,41 — X = Xp—1 — - = X1 Xy
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Note that det[®.] = (—1)", hence

1
/ L <—| |n+1xn+1dx1/\---/\dx">
n X

= (—1)”/ L* (%xn dx" P A dxt A /\dx”_l)

Id

= (=1)" (=11 / I (H%xn dx' A Adx"TEA dx”“)
n X

Applying the transformation ® inductively, one can conclude that

1
/,, I <|X‘T+lxn+1 dxl VANCIEIAN dx")
1
= (—1)1/ N (HTHX” dxt A Adx"TEA dx”“)
n X
1
= (—1)2/ N (HTHxnl dxt Ao Adx"TE A dx™ A dx”“)
n X

1 - _ -
:<_1)3/nl <|X|T+1xn_2dxl/\---/\dx” 3 Adx" 1/\---dx”l>

As a result, we have:

1
/ L*wz(n—i—l)/ N (HTHandxlA---/\dx”> # 0.
n n X

A more elegant approach is the following (legal but a bit cheating):

Define the following n-form on R 1
n+1 ) ' '
n= Z:(—l)l_1 xidx! Ao Adx T AT A A dx L
i=1

Although 1 # w, but 1"y = 1*w since |x| =1 on 5™
Note that 7 is smooth everywhere on R"*!. Applying Stokes” Theorem on 7 over
the ball {|x| < 1}, we get:

/L*w:/ 1*17:/ dan.
s " {Ix]<1}

Note that dy = (n+ 1) dx!- - - dx"*!, we get:

/ dn = +(n+ 1) x volume of the unit ball in R"*! # 0.
{IxI<1}

Page 7



MATH 4033 Generalized Stokes” Theorem Problem Set #4

(b) Hence, show that w is closed but is not exact on R"*1\ {0}.

Solution: By direct computations, we have:

n+1 o) -1 i—1,.. . ) .
d(,(): Zla—xl (%) dxl/\d.xl/\‘“/\dxlil/\dxbkl/\“'/\dxn‘kl
1=

n+1 o) X ) . )
= — ! dx' A Adx T Ad Adx U A - A dxTL
= axi |X|l’l+l

To show dw = 0, it suffices to show:

n+1 po} .
Z o J;qu+1 =0,
i1 9%\ |x]

which is straight-forward (hence omitted). Hence w is closed.

However, it cannot be exact. Suppose otherwise w = da for some (1 — 1)-form on
R"*1\{0}. Applying Stokes’ Theorem on (*w over S" (which is without bound-

ary), one would get:
/ Fw = / fdae = [ difa=0.
n n SVI

It contradicts to the result from (a).

5. On a smooth manifold M, a smooth positive-definite symmetric (2,0)-tensor g is called a
Riemannian metric on M. Using partitions of unity, show that every smooth manifold has
at least one Riemannian metric.

Solution: Let A = {F, : Uy, — O,} be an atlas of M, and let {p, : U, — [0,1]} be a
partitions of unity subordinate to .A.

Since each U, is an open set of IR”, locally there is a dot product 6, defined as:
n . .
bu =) duy, ® du,

=1

where (u},...,u") are local coordinates of the chart F, : U, — O,. Then, the following

is a Riemannian metric on M:
g = Zpaéa.
14

It is clearly symmetric and smooth. To show that it is positive-definite, we consider
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. — . Z a
an arbitrary vector X =} X au,

d
ZZpadua@)dua <ZX/58 Z,Z Ew

)

Up k
oul, oul! 0
“Y Y o o za u ﬁ®d” (ZXﬁa =) X
« jpg OUp 5 i=1 Ug k=1
T Y o auaauaXX5 o
X ijkpg u Ea”ﬁ e
:ZZ auaaua ][(%
& ik !3
2
:du
=zpaz(zxza;) 2
@ j i B

Moreover, if X # 0 at a point p € M, then for any a such that p € O, N Op, we have:

au,x

.

E(ZZ: 85

at p since the Jacobian D(F,! o Fg) is invertible. Moreover, there must exists at least
one « such that p,(p) # 0, so g(X,X) > 0 at p from the above result. Since p and

X € TyM is arbitrary, we conclude that g is positive-definite.

expressed in terms of local coordinates of Fg, then:

O
Pou

)
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