MATH 4033 • Spring 2018 • Calculus on Manifolds

Problem Set \#4 • Generalized Stokes' Theorem • Due Date: 06/05/2018, 11:59PM

1. Given that M is a smooth m-manifold without boundary, and N is a smooth n-manifold with boundary. Show that the product manifold $M \times N$ is a smooth $(m+n)$-manifold with boundary, and that $\partial(M \times N)=M \times \partial N$.

Solution: Let $\left\{F_{\alpha}\right\}$ be a family of local parameterizations of $M,\left\{G_{\beta}\right\}$ and $\left\{\bar{G}_{\gamma}\right\}$ be families of interior and boundary types of local parameterizations of N such that

$$
\begin{aligned}
F_{\alpha}: U_{\alpha} \subset \mathbb{R}^{m} \rightarrow M \\
G_{\beta}: V_{\beta} \subset \mathbb{R}^{n} \rightarrow N \\
\bar{G}_{\gamma}: \bar{V}_{\gamma} \subset \mathbb{R}_{+}^{m} \rightarrow N
\end{aligned}
$$

and that the transition function

$$
G_{\beta}^{-1} \circ G_{\beta^{\prime}} \quad G_{\beta}^{-1} \circ \bar{G}_{\gamma} \quad \bar{G}_{\gamma}^{-1} \circ G_{\beta} \quad \bar{G}_{\gamma}^{-1} \circ \bar{G}_{\gamma^{\prime}}
$$

are smooth on the overlapping domain for any $\beta, \beta^{\prime}, \gamma$ and γ^{\prime}. Clearly, $\left\{U_{\alpha} \times V_{\beta}, U_{\alpha} \times\right.$ $\left.\bar{V}_{\gamma}\right\}$ is a covering of $M \times N$. Now consider

$$
\begin{aligned}
& F_{\alpha} \times G_{\beta}: U_{\alpha} \times V \gamma \subset \mathbb{R}^{m+n} \rightarrow M \times N \\
& F_{\alpha} \times \bar{G}_{\beta}: U_{\alpha} \times \bar{V} \gamma \subset \mathbb{R}_{+}^{m+n} \rightarrow M \times N,
\end{aligned}
$$

check that

$$
\begin{aligned}
\left(F_{\alpha} \times G_{\beta}\right)^{-1} \circ\left(F_{\alpha}^{\prime} \times G_{\beta^{\prime}}\right) & =\left(F_{\alpha}^{-1} \circ F_{\alpha}^{\prime}\right) \times\left(G_{\beta}^{-1} \circ G_{\beta^{\prime}}\right) \\
\left(F_{\alpha} \times G_{\beta}\right)^{-1} \circ\left(F_{\alpha}^{\prime} \times \bar{G}_{\gamma}\right) & =\left(F_{\alpha}^{-1} \circ F_{\alpha}^{\prime}\right) \times\left(G_{\beta}^{-1} \circ \bar{G}_{\gamma}\right) \\
\left(F_{\alpha} \times \bar{G}_{\gamma}\right)^{-1} \circ\left(F_{\alpha}^{\prime} \times G_{\beta}\right) & =\left(F_{\alpha}^{-1} \circ F_{\alpha}^{\prime}\right) \times\left(\bar{G}_{\gamma}^{-1} \circ G_{\beta}\right) \\
\left(F_{\alpha} \times \bar{G}_{\gamma}\right)^{-1} \circ\left(F_{\alpha}^{\prime} \times \bar{G}_{\gamma^{\prime}}\right) & =\left(F_{\alpha}^{-1} \circ F_{\alpha}^{\prime}\right) \times\left(\bar{G}_{\gamma}^{-1} \circ \bar{G}_{\gamma^{\prime}}\right)
\end{aligned}
$$

are smooth for all $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma$ and γ^{\prime}. Thus, the product manifold $M \times N$ is a smooth ($m+n$)-manifold with boundary. Also, we have

$$
\begin{aligned}
& \partial(M \times N) \\
= & \bigcup_{\alpha, \gamma}\left\{F_{\alpha} \times G_{\gamma}\left(u_{1}, \cdots, u_{m}, \bar{v}_{1}, \cdots, \bar{v}_{n-1}, 0\right):\left(u_{1}, \cdots, u_{m}\right) \in U_{\alpha}\left(\bar{v}_{1}, \cdots, \bar{v}_{n-1}, 0\right) \in \bar{V}_{\gamma}\right\} \\
= & \bigcup_{\alpha, \gamma}\left\{F_{\alpha}\left(u_{1}, \cdots, u_{m}\right) \times G_{\gamma}\left(\bar{v}_{1}, \cdots, \bar{v}_{n-1}, 0\right)\right\} \\
= & \left.\bigcup_{\alpha}\left\{F_{\alpha}\left(u_{1}, \cdots, u_{m}\right)\right\} \times \bigcup_{\gamma} G_{\gamma}\left(\bar{v}_{1}, \cdots, \bar{v}_{n-1}, 0\right)\right\} \\
= & M \times \partial N
\end{aligned}
$$

2. Prove the following about orientability:
(a) Show that the n-dimensional sphere \mathbb{S}^{n} is orientable.

Solution: We regard n-dimensional sphere \mathbb{S}^{n} as a hypersurface in \mathbb{R}^{n+1}. Clearly, the unit outward normal vector at point x is x itself which is continuous on the whole \mathbb{S}^{n}. Hence, \mathbb{S}^{n} is orientable.

Alternatively, one can argue by observing that the stereographic atlas of \mathbb{S}^{n} consists of only two parametrizations F_{+}and F_{-}whose overlap is connected. Hence, one can always rearrange the variables of say F_{-}to guarantee that $\operatorname{det} D\left(\mathrm{~F}_{+}^{-1} \circ\right.$ $\left.F_{-}\right)>0$ on the overlap.
(b) Show that the Klein bottle defined in HW2 is not orientable.

Solution: Consider the two parametrizations of \mathbb{R}^{2} / \sim :

$$
\begin{aligned}
\mathrm{G}_{\alpha}:(0,1) \times(0,1) & \rightarrow \mathbb{R}^{2} / \sim & \mathrm{G}_{\beta}:(0,1) \times(0.5,1.5) & \rightarrow \mathbb{R}^{2} / \sim \\
\left(x_{\alpha}, y_{\alpha}\right) & \mapsto\left[\left(x_{\alpha}, y_{\alpha}\right)\right] & \left(x_{\beta}, y_{\beta}\right) & \mapsto\left[\left(x_{\beta}, y_{\beta}\right)\right]
\end{aligned}
$$

where the equivalence relation \sim defined on \mathbb{R}^{2} :

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \Longleftrightarrow \quad\left(x^{\prime}, y^{\prime}\right)=\left((-1)^{n} x+m, y+n\right) \text { for some integers } m \text { and } n .
$$

From HW 2, we have

$$
\mathrm{G}_{\beta}^{-1} \circ \mathrm{G}_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\left\{\begin{array}{ll}
\left(1-x_{\alpha}, y_{\alpha}+1\right) & \text { if }\left(x_{\alpha}, y_{\alpha}\right) \in(0,1) \times(0,0.5) \\
\left(x_{\alpha}, y_{\alpha}\right) & \text { if }\left(x_{\alpha}, y_{\alpha}\right) \in(0,1) \times(0.5,1)
\end{array} .\right.
$$

which implies

$$
D\left(\mathrm{G}_{\beta}^{-1} \circ \mathrm{G}_{\alpha}\right)= \begin{cases}{\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]} & \text { if }\left(x_{\alpha}, y_{\alpha}\right) \in(0,1) \times(0,0.5) \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]} & \text { if }\left(x_{\alpha}, y_{\alpha}\right) \in(0,1) \times(0.5,1)\end{cases}
$$

such that

$$
\operatorname{det}\left(D\left(\mathrm{G}_{\beta}^{-1} \circ \mathrm{G}_{\alpha}\right)\right)= \begin{cases}-1 & \text { if }\left(x_{\alpha}, y_{\alpha}\right) \in(0,1) \times(0,0.5) \\ 1 & \text { if }\left(x_{\alpha}, y_{\alpha}\right) \in(0,1) \times(0.5,1)\end{cases}
$$

To complete the proof that the Klein bottle is non-orientable, we assume on the contrary that there exist a non-vanishing smooth 2-form ω globally defined on \mathbb{R}^{2} / \sim. In terms of local coordinates, we have

$$
\left\{\begin{array}{l}
\omega=\varphi_{\alpha} d x_{\alpha} \wedge d x_{\alpha} \\
\omega=\varphi_{\beta} d x_{\beta} \wedge d y_{\beta}
\end{array}\right.
$$

As the domain of G_{α} is connected, $\omega\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial y_{\alpha}}\right)$ is either positive on the whole domain $(0,1) \times(0,1)$, or negative on the whole domain. Similar for $\omega\left(\frac{\partial}{\partial x_{\beta}}, \frac{\partial}{\partial y_{\beta}}\right)$.

WLOG assume $\omega\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial y_{\alpha}}\right)>0$ and $\omega\left(\frac{\partial}{\partial x_{\beta}}, \frac{\partial}{\partial y_{\beta}}\right)<0$ (the other cases are similar).
Then, on the overlap of the two coordinate systems, we first have:

$$
\begin{aligned}
& 0<\omega\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial y_{\alpha}}\right)=\varphi_{\alpha} \\
& 0>\omega\left(\frac{\partial}{\partial x_{\beta}}, \frac{\partial}{\partial y_{\beta}}\right)=\varphi_{\beta}
\end{aligned}
$$

Moreover, by change-of-coordinates, we also have:

$$
\varphi_{\alpha}=\varphi_{\beta} \operatorname{det} \frac{\partial\left(x_{\beta}, y_{\beta}\right)}{\partial\left(x_{\alpha}, y_{\alpha}\right)} \quad \Longrightarrow \quad \frac{\varphi_{\alpha}}{\varphi_{\beta}}=\operatorname{det} D\left(\mathrm{G}_{\beta}^{-1} \circ \mathrm{G}_{\alpha}\right)
$$

showing that $\operatorname{det} D\left(\mathrm{G}_{\beta}^{-1} \circ \mathrm{G}_{\alpha}\right)<0$ on everywhere of the overlap, which contradicts to our computations. Hence, the Klein bottle is not orientable.
(c) Show that the tangent bundle $T M$ of any smooth manifold M must be orientable (no matter whether M is orientable or not).

Solution: Let $F\left(u_{1}, \cdots, u_{n}\right): U \rightarrow O$ be a local parametrization of M, the induced local parametrization $\widetilde{F}: U \times \mathbb{R}^{n} \rightarrow T M$ of the tangent bundle $T M$ is

$$
\widetilde{F}\left(\left(u_{1}, \cdots, u_{n}, a^{1}, \cdots, a^{n}\right)=\left(F\left(u_{1}, \cdots, u_{n}\right), a^{1} \frac{\partial}{\partial u_{1}}+\cdots+a^{n} \frac{\partial}{\partial u_{n}}\right) \in T M .\right.
$$

Let $G\left(u_{1}, \cdots, u_{n}\right): U \rightarrow O$ be another local parametrization of M, the induced local parametrization $\widetilde{G}: U \times \mathbb{R}^{n} \rightarrow T M$ of the tangent bundle $T M$ is

$$
\widetilde{G}\left(\left(v_{1}, \cdots, v_{n}, a^{1}, \cdots, a^{n}\right)=\left(G\left(v_{1}, \cdots, v_{n}\right), a^{1} \frac{\partial}{\partial v_{1}}+\cdots+a^{n} \frac{\partial}{\partial v_{n}}\right) \in T M\right.
$$

Then,

$$
\widetilde{G}^{-1} \circ \widetilde{F}=\left(G^{-1} \circ F\left(u_{1}, \cdots, u_{n}\right), a^{j} \frac{\partial v_{1}}{\partial u_{j}}, \cdots, a^{j} \frac{\partial v_{n}}{\partial u_{j}}\right)
$$

implies

$$
\operatorname{det} D\left(\widetilde{G}^{-1} \circ \widetilde{F}\right)=\operatorname{det}\left[\begin{array}{cc}
D\left(G^{-1} \circ F\right) & 0 \\
* & D\left(G^{-1} \circ F\right)
\end{array}\right] .
$$

Hence, $\operatorname{det} D\left(\widetilde{G}^{-1} \circ \widetilde{F}\right)=\left(D\left(G^{-1} \circ F\right)\right)^{2}>0$ since $G^{-1} \circ F$ is invertible. Therefore, $T M$ is orientable.
(d) A complex manifold $M^{2 n}$ is a smooth manifold equipped with an atlas $\left\{\mathrm{F}_{\alpha}: \mathcal{U}_{\alpha} \subset\right.$ $\left.\mathbb{C}^{n} \rightarrow M^{2 n}\right\}$ such that the transition functions are holomorphic, i.e. by writing $\left(u_{1}+i v_{1}, \ldots, u_{n}+i v_{n}\right)=\mathrm{F}_{\beta}^{-1} \circ \mathrm{~F}_{\alpha}\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)$, each u_{k} and v_{k} are (real) differentiable functions of $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, and the Cauchy-Riemann equations are
satisfied:

$$
\frac{\partial u_{k}}{\partial x_{j}}=\frac{\partial v_{k}}{\partial y_{j}} \quad \frac{\partial u_{k}}{\partial y_{j}}=-\frac{\partial v_{k}}{\partial x_{j}}
$$

for any $k, j \in\{1, \ldots, n\}$. Show that any complex manifold must be orientable.
Solution: Let

$$
A=\frac{\partial\left(u_{1}, \cdots, u_{n}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)} \text { and } B=\frac{\partial\left(v_{1}, \cdots, v_{n}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)} \text {. }
$$

By the Cauchy-Riemann equations, we have

$$
D\left(\mathrm{~F}_{\beta}^{-1} \circ \mathrm{~F}_{\alpha}\right)=\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right] .
$$

Now we consider a matrix

$$
P=\left[\begin{array}{cc}
I_{n} & i I_{n} \\
I_{n} & -i I_{n}
\end{array}\right] \text { with } P^{-1}=\frac{1}{2}\left[\begin{array}{cc}
I_{n} & I_{n} \\
-i I_{n} & i I_{n}
\end{array}\right] \text {, }
$$

then

$$
P D\left(\mathrm{~F}_{\beta}^{-1} \circ \mathrm{~F}_{\alpha}\right) P^{-1}=\frac{1}{2}\left[\begin{array}{cc}
I_{n} & i I_{n} \\
I_{n} & -i I_{n}
\end{array}\right]\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right]\left[\begin{array}{cc}
I_{n} & I_{n} \\
-i I_{n} & i I_{n}
\end{array}\right]=\left[\begin{array}{cc}
A+i B & 0 \\
0 & A-i B
\end{array}\right] .
$$

Hence,

$$
\begin{aligned}
\operatorname{det} D\left(\mathrm{~F}_{\beta}^{-1} \circ \mathrm{~F}_{\alpha}\right) & =\operatorname{det}\left(P D\left(\mathrm{~F}_{\beta}^{-1} \circ \mathrm{~F}_{\alpha}\right) P^{-1}\right) \\
& =\operatorname{det}\left[\begin{array}{cc}
A+i B & 0 \\
0 & A-i B
\end{array}\right] \\
& =\operatorname{det}(A+i B) \operatorname{det}(A-i B) \\
& =|\operatorname{det}(A+i B)|^{2}
\end{aligned}
$$

On the other hand, by chain rule, we have

$$
\begin{aligned}
\operatorname{det}(A+i B) & =\operatorname{det}\left(\frac{\partial\left(u_{1}+i v_{1}, \cdots, u_{n}+i v_{n}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}\right) \\
& =\operatorname{det}\left(\frac{\partial\left(u_{1}+i v_{1}, \cdots, u_{n}+i v_{n}\right)}{\partial\left(x_{1}+i y_{1}, \cdots, x_{n}+i y_{n}\right)}\right) \\
& =\operatorname{det}\left(D\left(F_{\beta}^{-1} \circ \mathrm{~F}_{\alpha}\right)\right) \\
& \neq 0,
\end{aligned}
$$

since $F_{\beta}^{-1} \circ F_{\alpha}$ is invertible. Thus, we obtain

$$
\operatorname{det} D\left(\mathrm{~F}_{\beta}^{-1} \circ \mathrm{~F}_{\alpha}\right)=|\operatorname{det}(A+i B)|^{2}>0
$$

which implies any complex manifold must be orientable.
3. Let $\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$ be a 2 -form on \mathbb{R}^{3}.
(a) Let S^{2} be the unit sphere in \mathbb{R}^{3} centered at the origin. Compute directly the integral:

$$
\int_{\mathrm{S}^{2}} \iota^{*} \omega
$$

where $\iota: \mathrm{S}^{2} \rightarrow \mathbb{R}^{3}$ is the inclusion map.
Solution: Let $F(\rho, \theta)=(\sin \rho \cos \theta, \sin \rho \sin \theta, \cos \rho)$ be a parametrization of \mathbb{S}^{2}. Then we have

$$
\begin{aligned}
\iota^{*} \omega & =i^{*}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y) \\
& =\sin \rho d \rho \wedge d \theta
\end{aligned}
$$

Hence, we have

$$
\int_{\mathrm{S}^{2}} \iota^{*} \omega=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \rho d \rho d \theta=4 \pi
$$

(b) Let Σ be a compact, orientable, simply-connected regular surface in \mathbb{R}^{3} without boundary, and $\iota: \Sigma \rightarrow \mathbb{R}^{3}$ be the inclusion map. Using generalized Stokes' Theorem, show that:

$$
\frac{1}{3} \int_{\Sigma} l^{*} \omega
$$

is equal to the volume of the solid D enclosed by Σ.
[Remark: You may assume without proof that such Σ must enclose a solid D, and that $\Sigma=\partial D$.]

Solution: We first compute

$$
\begin{aligned}
\omega & =x d y \wedge d z+y d z \wedge d x+z d x \wedge d y \\
d \omega & =d x \wedge d y \wedge d z+d y \wedge d z \wedge d x+d z \wedge d x \wedge d y \\
& =3 d x \wedge d y \wedge d z
\end{aligned}
$$

By Stokes' Theorem, we obtain

$$
\begin{aligned}
\frac{1}{3} \int_{\Sigma=\partial D}{\iota^{*}}^{*} & =\frac{1}{3} \int_{D} d \omega \\
& =\int_{D} d x \wedge d y \wedge d z \\
& =\text { Volume of } \mathrm{D}
\end{aligned}
$$

4. Let ω be the n-form on $\mathbb{R}^{n+1} \backslash\{0\}$ defined by:

$$
\omega=\frac{1}{|\times|^{n+1}} \sum_{i=1}^{n+1}(-1)^{i-1} x_{i} d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1}
$$

where $\mathrm{x}=\left(x_{1}, \ldots, x_{n+1}\right)$ and $|\mathrm{x}|=\sqrt{x_{1}^{2}+\cdots+x_{n+1}^{2}}$.
(a) Let $\iota: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n+1}$ be the inclusion of the unit n-sphere \mathbb{S}^{n}. Show that $\int_{\mathbb{S}^{n}} \iota^{*} \omega \neq 0$.

Solution: First note that we cannot apply Stokes' Theorem on directly on $\iota^{*} \omega$ with $M=\{\mathrm{x}:|\mathrm{x}| \leq 1\}$ and $\partial M=\mathbb{S}^{n}$, since ω is not smooth at the origin. We proceed by direct computations using higher-dimensional spherical coordinates. Note that we only have to compute the integral of one term only, say:

$$
\frac{1}{|x|^{n+1}} x_{n+1} d x^{1} \wedge \cdots \wedge d x^{n}
$$

using the coordinates:

$$
\begin{aligned}
x_{1} & =\cos \phi_{1} \\
x_{2} & =\sin \phi_{1} \cos \phi_{2} \\
x_{3} & =\sin \phi_{2} \cos \phi_{3} \\
\vdots & \\
x_{n} & =\sin \phi_{1} \cdots \sin \phi_{n-1} \cos \phi_{n} \\
x_{n+1} & =\sin \phi_{1} \cdots \sin \phi_{n-1} \sin \phi_{n}
\end{aligned}
$$

where $\phi_{1}, \ldots, \phi_{n-1} \in(0, \pi)$ and $\phi_{n} \in(0,2 \pi)$. By direct computations, one gets:

$$
\begin{aligned}
& \iota^{*}\left(\frac{1}{|x|^{n+1}} x_{n+1} d x^{1} \wedge \cdots \wedge d x^{n}\right) \\
& =\underbrace{\sin \phi_{1} \cdots \sin \phi_{n-1} \sin \phi_{n}}_{x_{n+1}}\left(-\sin \phi_{1} d \phi_{1}\right) \wedge\left(-\sin \phi_{1} \sin \phi_{2} d \phi_{2}\right) \wedge \cdots \\
& \quad \cdots \wedge\left(-\sin \phi_{1} \cdots \sin \phi_{n-1} \sin \phi_{n}\right) \\
& =(-1)^{n} \sin ^{?} \phi_{1} \sin ^{?} \phi_{2} \cdots \sin ^{?} \phi_{n-1} \sin ^{2} \phi_{n} .
\end{aligned}
$$

Note that many terms were gone after taking wedge products, and the above is the only term survived. We denote ? above as a positive integer which we do not care its exact value. Integrating over S^{n}, we get:

$$
\begin{aligned}
& \int_{\mathrm{S}^{n}} \iota^{*}\left(\frac{1}{|x|^{n+1}} x_{n+1} d x^{1} \wedge \cdots \wedge \cdots \wedge d x^{n}\right) \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}(-1)^{n} \sin ^{?} \phi_{1} \sin ^{?} \phi_{2} \cdots \sin ^{?} \phi_{n-1} \sin ^{2} \phi_{n} d \phi_{1} d \phi_{2} \cdots d \phi_{n}
\end{aligned}
$$

Since $\sin \phi_{1}, \ldots, \sin \phi_{n-1}>0$ on $(0, \pi)$, and $\int_{0}^{2 \pi} \sin ^{2} \phi_{n} d \phi_{n}>0$, we conclude that the above integral is non-zero.
Note that the unit sphere is reflectional symmetric, hence is invariant under the transformation $\Phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ taking $x_{n+1} \mapsto x_{n} \mapsto x_{n-1} \rightarrow \cdots \mapsto x_{1} \mapsto x_{n+1}$.

Note that $\operatorname{det}\left[\Phi_{*}\right]=(-1)^{n}$, hence

$$
\begin{aligned}
& \int_{S^{n}} \iota^{*}\left(\frac{1}{|x|^{n+1}} x_{n+1} d x^{1} \wedge \cdots \wedge d x^{n}\right) \\
& =(-1)^{n} \int_{S^{n}} \iota^{*}\left(\frac{1}{|x|^{n+1}} x_{n} d x^{n+1} \wedge d x^{1} \wedge \cdots \wedge d x^{n-1}\right) \\
& =\underbrace{(-1)^{n}(-1)^{1(n-1)}}_{=-1} \int_{S^{n}} \iota^{*}\left(\frac{1}{|\times|^{n+1}} x_{n} d x^{1} \wedge \cdots \wedge d x^{n-1} \wedge d x^{n+1}\right)
\end{aligned}
$$

Applying the transformation Φ inductively, one can conclude that

$$
\begin{aligned}
& \int_{\mathrm{S}^{n}} t^{*}\left(\frac{1}{|x|^{n+1}} x_{n+1} d x^{1} \wedge \cdots \wedge d x^{n}\right) \\
& =(-1)^{1} \int_{\mathrm{S}^{n}} t^{*}\left(\frac{1}{|x|^{n+1}} x_{n} d x^{1} \wedge \cdots \wedge d x^{n-1} \wedge d x^{n+1}\right) \\
& =(-1)^{2} \int_{\mathrm{S}^{n}} t^{*}\left(\frac{1}{|x|^{n+1}} x_{n-1} d x^{1} \wedge \cdots \wedge d x^{n-2} \wedge d x^{n} \wedge d x^{n+1}\right) \\
& =(-1)^{3} \int_{\mathrm{S}^{n}} t^{*}\left(\frac{1}{|x|^{n+1}} x_{n-2} d x^{1} \wedge \cdots \wedge d x^{n-3} \wedge d x^{n-1} \wedge \cdots d x^{n=1}\right) \\
& =\cdots
\end{aligned}
$$

As a result, we have:

$$
\int_{\mathrm{S}^{n}} i^{*} \omega=(n+1) \int_{\mathrm{S}^{n}} \iota^{*}\left(\frac{1}{|x|^{n+1}} x_{n+1} d x^{1} \wedge \cdots \wedge d x^{n}\right) \neq 0
$$

A more elegant approach is the following (legal but a bit cheating):
Define the following n-form on \mathbb{R}^{n+1} :

$$
\eta=\sum_{i=1}^{n+1}(-1)^{i-1} x_{i} d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1}
$$

Although $\eta \neq \omega$, but $\iota^{*} \eta=\iota^{*} \omega$ since $|\mathrm{x}|=1$ on S^{n}.
Note that η is smooth everywhere on \mathbb{R}^{n+1}. Applying Stokes' Theorem on η over the ball $\{|x| \leq 1\}$, we get:

$$
\int_{S^{n}} i^{*} \omega=\int_{S^{n}} i^{*} \eta=\int_{\{|x| \leq 1\}} d \eta .
$$

Note that $d \eta=(n+1) d x^{1} \cdots d x^{n+1}$, we get:

$$
\int_{\{|x| \leq 1\}} d \eta= \pm(n+1) \times \text { volume of the unit ball in } \mathbb{R}^{n+1} \neq 0 .
$$

(b) Hence, show that ω is closed but is not exact on $\mathbb{R}^{n+1} \backslash\{0\}$.

Solution: By direct computations, we have:

$$
\begin{aligned}
d \omega & =\sum_{i=1}^{n+1} \frac{\partial}{\partial x_{i}}\left(\frac{(-1)^{i-1} x_{i}}{|\mathrm{x}|^{n+1}}\right) d x^{i} \wedge d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1} \\
& =\sum_{i=1}^{n+1} \frac{\partial}{\partial x_{i}}\left(\frac{x_{i}}{|x|^{n+1}}\right) d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1}
\end{aligned}
$$

To show $d \omega=0$, it suffices to show:

$$
\sum_{i=1}^{n+1} \frac{\partial}{\partial x_{i}}\left(\frac{x_{i}}{|x|^{n+1}}\right)=0
$$

which is straight-forward (hence omitted). Hence ω is closed.
However, it cannot be exact. Suppose otherwise $\omega=d \alpha$ for some ($n-1$)-form on $\mathbb{R}^{n+1} \backslash\{0\}$. Applying Stokes' Theorem on $\iota^{*} \omega$ over \mathbb{S}^{n} (which is without boundary), one would get:

$$
\int_{S^{n}} l^{*} \omega=\int_{\mathbb{S}^{n}} l^{*} d \alpha=\int_{\mathbb{S}^{n}} d l^{*} \alpha=0 .
$$

It contradicts to the result from (a).
5. On a smooth manifold M, a smooth positive-definite symmetric (2,0)-tensor g is called a Riemannian metric on M. Using partitions of unity, show that every smooth manifold has at least one Riemannian metric.

Solution: Let $\mathcal{A}=\left\{\mathrm{F}_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \mathcal{O}_{\alpha}\right\}$ be an atlas of M, and let $\left\{\rho_{\alpha}: \mathcal{U}_{\alpha} \rightarrow[0,1]\right\}$ be a partitions of unity subordinate to \mathcal{A}.
Since each \mathcal{U}_{α} is an open set of \mathbb{R}^{n}, locally there is a dot product δ_{α} defined as:

$$
\delta_{\alpha}=\sum_{j=1}^{n} d u_{\alpha}^{i} \otimes d u_{\alpha}^{i}
$$

where $\left(u_{\alpha}^{1}, \ldots, u_{\alpha}^{n}\right)$ are local coordinates of the chart $\mathrm{F}_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \mathcal{O}_{\alpha}$. Then, the following is a Riemannian metric on M :

$$
g:=\sum_{\alpha} \rho_{\alpha} \delta_{\alpha} .
$$

It is clearly symmetric and smooth. To show that it is positive-definite, we consider
an arbitrary vector $X=\sum_{i} X_{\beta}^{i} \frac{\partial}{\partial u_{\beta}^{i}}$ expressed in terms of local coordinates of F_{β}, then:

$$
\begin{aligned}
g(X, X) & =\sum_{\alpha} \sum_{j=1}^{n} \rho_{\alpha} d u_{\alpha}^{j} \otimes d u_{\alpha}^{j}\left(\sum_{i=1}^{n} X_{\beta}^{i} \frac{\partial}{\partial u_{\beta}^{i}}, \sum_{k=1}^{n} X_{\beta}^{k} \frac{\partial}{\partial u_{\beta}^{k}}\right) \\
& =\sum_{\alpha} \sum_{j, p, q} \rho_{\alpha} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{p}} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{q}} d u_{\beta}^{p} \otimes d u_{\beta}^{q}\left(\sum_{i=1}^{n} X_{\beta}^{i} \frac{\partial}{\partial u_{\beta}^{i}}, \sum_{k=1}^{n} X_{\beta}^{k} \frac{\partial}{\partial u_{\beta}^{k}}\right) \\
& =\sum_{\alpha} \sum_{i, j, k, k, q} \rho_{\alpha} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{p}} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{q}} X_{\beta}^{i} X_{\beta}^{k} \delta_{i p} \delta_{q k} \\
& =\sum_{\alpha} \sum_{i, j, k} \rho_{\alpha} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{i}} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{k}} X_{\beta}^{i} X_{\beta}^{k} \\
& =\sum_{\alpha} \rho_{\alpha} \sum_{j}\left(\sum_{i} X_{\beta}^{i} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{i}}\right)^{2} \geq 0
\end{aligned}
$$

Moreover, if $X \neq 0$ at a point $p \in M$, then for any α such that $p \in \mathcal{O}_{\alpha} \cap \mathcal{O}_{\beta}$, we have:

$$
\sum_{j}\left(\sum_{i} x_{\beta}^{i} \frac{\partial u_{\alpha}^{j}}{\partial u_{\beta}^{i}}\right)^{2} \neq 0
$$

at p since the Jacobian $D\left(\mathrm{~F}_{\alpha}^{-1} \circ \mathrm{~F}_{\beta}\right)$ is invertible. Moreover, there must exists at least one α such that $\rho_{\alpha}(p) \neq 0$, so $g(X, X)>0$ at p from the above result. Since p and $X \in T_{p} M$ is arbitrary, we conclude that g is positive-definite.

