
MATH 4033 • Spring 2018 • Calculus on Manifolds
Problem Set #3 • Tensors and Differential Forms • Due Date: 08/04/2018, 11:59PM

1. Show that the Lie derivative of a 1-form

α = ∑
i

αi dui

along a vector field X = ∑j X j ∂
∂uj

is locally expressed as:

LXα = ∑
i,j


Xi ∂αj

∂ui
+ αi

∂Xi

∂uj


duj.

Solution: Denote Φt to be the flow map of X, then for any p on the manifold, we
have

(LXα)p :=
d
dt


t=0

Φ∗
t αΦt(p)

=
d
dt


t=0

∑
i
(αi ◦ Φt)d(ui ◦ Φt) (Note that Φ∗ and d commute)

= ∑
i,j

∂αi

∂uj
X j

  
d
dt (αi◦Φt)

+αi
d
dt


t=0

∂(ui ◦ Φt)

∂uj
duj

= ∑
i,j

∂αi

∂uj
X j

  
d
dt (αi◦Φt)

+αi
∂

∂uj

d
dt


t=0

(ui ◦ Φt) duj

The proof is completed by showing

d
dt


t=0

(ui ◦ Φt) = ∑
k

∂ui

∂uk
Xk = ∑

k
δikXK = Xi.

2. Consider a smooth manifold Mn and the following symmetric (2, 0)-tensors on M:

g = ∑
i,j

gij dui ⊗ duj h = ∑
i,j

hij dui ⊗ duj

where (u1, . . . , un) are local coordinates of M. Suppose the matrix [gij] is positive definite
(all its eigenvalues are positive).

(a) Let (v1, . . . , vn) be another local coordinates system, and the local expression of g in
terms of this system be:

g = ∑
i,j

gij dvi ⊗ dvj.

Express gij in terms of gij, and then show that the matrix [gij] is also symmetric and
positive definite.
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Solution: By chain rule, we have dui = ∑α
∂ui
∂vα

dvα, so

g = ∑
i,j

gij dui ⊗ duj

= ∑
i,j

gij



∑
α

∂ui

∂vα
dvα


⊗



∑
β

∂uj

∂vβ
dvβ



= ∑
i,j,α,β

gij
∂ui

∂vα

∂uj

∂vβ
dvα ⊗ dvβ.

Thus, we have

gij = ∑
α,β

gαβ
∂uα

∂vi

∂uβ

∂vj
. (1)

Hence [g] = AT[g]A where A =
∂(uβ)

∂(vj)
. Clearly, [g]T = AT[g]T(AT)T = AT[g]A =

[g], so [g] is also symmetric. Also, [g] and [g] are similar matrices, thus [g] is
positive definite if and only if [g] is positive definite.

(b) Show that the quantity
det[hij]

det[gij]
is independent of local coordinates, i.e.

det[hij]

det[gij]
=

det[hij]

det[gij]
.

Solution: From (a), we have [g] = AT[g]A where A =
∂(uβ)

∂(vj)
. Similarly, we can

show [h] = AT[h]A. Note that A depends only on transition maps but not the
tensors (i.e. the same A for both g and h). Hence,

det[h]
det[g] =

det(AT)det[h]det(A)

det(AT)det[g]det(A)
=

det[h]
det[g]

.

3. Define a 2-form ω on R3 by

ω = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy.

(a) Express ω in spherical coordinates (ρ, θ, ϕ) defined by:

x = ρ sin ϕ cos θ

y = ρ sin ϕ sin θ

z = ρ cos ϕ
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Solution: By direct computation,

dx = sin ϕ cos θ dρ + ρ cos ϕ cos θ dϕ − ρ sin ϕ sin θ dθ

dy = sin ϕ sin θ dρ + ρ cos ϕ sin θ dϕ + ρ sin ϕ cos θ dθ

dz = cos ϕ dρ − ρ sin ϕ dϕ

dy ∧ dz = −ρ sin θ dρ ∧ dϕ + ρ2 sin2 ϕ cos θ dϕ ∧ dθ + ρ sin ϕ cos ϕ cos θ dθ ∧ dρ

dz ∧ dx = ρ cos θ dρ ∧ dϕ + ρ2 sin2 ϕ sin θ dϕ ∧ dθ + ρ sin ϕ cos ϕ sin θ dθ ∧ dρ

dx ∧ dy = ρ2 sin ϕ cos ϕ dϕ ∧ dθ − ρ sin2 ϕ dθ ∧ dρ.

Hence, we have
ω = −ρ3 sin ϕ dθ ∧ dϕ.

(b) Compute dω in both rectangular and spherical coordinates.

Solution: In rectangular coordinates,

dω = dx ∧ dy ∧ dz + dy ∧ dz ∧ dx + dz ∧ dx ∧ dy = 3 dx ∧ dy ∧ dz.

In spherical coordinates,

dω = −∂(ρ3 sin ϕ)

∂ρ
dρ ∧ dθ ∧ dϕ == −3ρ2 sin ϕ dρ ∧ dθ ∧ dϕ.

(c) Let S2 be the unit sphere x2 + y2 + z2 = 1 in R3. Consider the inclusion map ι : S2 →
R3. Compute the pull-back ι∗ω, and express it in terms of spherical coordinates.

Solution: We have ρ = 1, ι∗(dθ) = dθ and ι∗(dϕ) = dϕ. Hence,

ι∗ω = −ρ3 sin ϕ

ι∗(dθ) ∧ ι∗(dϕ)



= − sin ϕ dθ ∧ dϕ.

(d) Let δ = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz be a symmetric (2, 0)-tensor on R3. Compute
ι∗δ, and express it in terms of spherical coordinates.

Solution: Since ρ = 1, we have

ι∗(dx) = d(ι∗x) = d(x ◦ ι) = dx = cos ϕ cos θ dϕ − sin ϕ sin θ dθ

ι∗(dy) = d(ι∗y) = d(y ◦ ι) = dy = cos ϕ sin θ dϕ + sin ϕ cos θ dθ

ι∗(dz) = d(ι∗z) = d(z ◦ ι) = dz = − sin ϕ dϕ.
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Hence,

ι∗δ = ι∗(dx)⊗ ι∗(dx) + ι∗(dy)⊗ ι∗(dy) + ι∗(dz)⊗ ι∗(dz)

=


cos ϕ cos θ
2 dϕ ⊗ dϕ +


sin ϕ sin θ

2 dθ ⊗ dθ

−


cos ϕ cos θ


sin ϕ sin θ


dθ ⊗ dϕ

+


cos ϕ sin θ
2 dϕ ⊗ dϕ +


sin ϕ cos θ

2 dθ ⊗ dθ

+


cos ϕ sin θ


sin ϕ cos θ


dθ ⊗ dϕ

+ sin2 ϕ dϕ ⊗ dϕ

= sin2 ϕ dθ ⊗ dθ + dϕ ⊗ dϕ.

4. The purpose of this exercise is to show that any closed 1-form ω on R3 must be exact. Let

ω = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz

be a closed 1-form on R3. Define f : R3 → R by:

f (x, y, z) =
ˆ t=1

t=0
(xP(tx, ty, tz) + yQ(tx, ty, tz) + zR(tx, ty, tz)) dt.

(a) Show that d f = ω.

Solution: Taking the exterior derivative of ω, we have

dω =


∂Q
∂x

− ∂P
∂y


dx ∧ dy +


∂R
∂y

− ∂Q
∂z


dy ∧ dz +


∂P
∂z

− ∂R
∂x


dz ∧ dx.

Since ω is closed, we have dω = 0 which implies

∂Q
∂x

=
∂P
∂y

,
∂R
∂y

=
∂Q
∂z

∂P
∂z

=
∂R
∂x

Then by using chain rule, we compute that

∂ f
∂x

=

ˆ t=1

t=0


P + x

∂P
∂x

t + y
∂Q
∂x

t + z
∂R
∂x

t


dt

=

ˆ t=1

t=0


P + x

∂P
∂x

t + y
∂P
∂y

t + z
∂P
∂z

t


dt

=

ˆ t=1

t=0


d
dt

tP(tx, ty, tz)


dt

= tP(tx, ty, tz)

t=1

t=0

= P(x, y, z)

Similarly, we have
∂ f
∂y

= Q(x, y, z),
∂ f
∂z

= R(x, y, z)

Hence,

d f =
∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz = Pdx + Qdy + Rdz = ω
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(b) Point out exactly where you have used the fact that dω = 0 in your solution to (a).

Solution: In (a), we have used the fact that dω = 0 everywhere on R3 to derive
the equalities

∂Q
∂x

=
∂P
∂y

,
∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

,

which are then used to convert the integral:

ˆ t=1

t=0


P + x

∂P
∂x

t + y
∂Q
∂x

t + z
∂R
∂x

t


dt =
ˆ t=1

t=0


P + x

∂P
∂x

t + y
∂P
∂y

t + z
∂P
∂z

t


dt

(c) Explain why your solution to (a) would fail if the domain of ω is R3\{p} (where p
is a fixed point in R3).

Solution: If the domain of ω is R \ {p}, then either P, Q, R is undefined at p.
Hence it does not make sense to talk about

∂Q
∂x


p
=

∂P
∂y


p
,

∂R
∂y


p
=

∂Q
∂z


p
,

∂P
∂z


p
=

∂R
∂x


p
.

If the straight line joining (0, 0, 0) to (x, y, z) passes through this point p, then the
integrand in

ˆ t=1

t=0


P + x

∂P
∂x

t + y
∂Q
∂x

t + z
∂R
∂x

t


dt

is not continuous. It may not be legitimate to switch
∂

∂x
and the integral sign.

5. Consider R4 with coordinates (t, x, y, z), which is also denoted as (x0, x1, x2, x3) in this
problem. Denote ∗ to be the Minkowski Hodge-star operator on R4 (see P.104).

(a) Compute each of the following:

∗(dt ∧ dx) ∗(dt ∧ dy) ∗(dt ∧ dz)
∗(dx ∧ dy) ∗(dy ∧ dz) ∗(dz ∧ dx)

Solution: By direct computation, we have

∗(dt ∧ dx) = −dy ∧ dz ∗(dt ∧ dy) = −dz ∧ dx ∗(dt ∧ dz) = −dx ∧ dy
∗(dx ∧ dy) = dt ∧ dz ∗(dy ∧ dz) = dt ∧ dx ∗(dz ∧ dx) = dt ∧ dy

(b) The four Maxwell’s equations are a set of partial differential equations that form
the foundation of electromagnetism. Denote the components of the electric field E,
magnetic field B, and current density J by

E = Exi+ Eyj+ Ezk

B = Bxi+ Byj+ Bzk

J = jxi+ jyj+ jzk
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All components of E, B and J are considered to be time-dependent. Denote ρ to be
the charge density. The four Maxwell’s equations assert that:

∇ · E = ρ ∇ · B = 0

∇× E = −∂B

∂t
∇× B = J+

∂E

∂t
We are going to convert the Maxwell’s equations using the language of differential
forms. We define the following analogue of E, B, J and ρ using differential forms:

E = Ex dx + Ey dy + Ez dz
B = Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy
J = (jx dy ∧ dz + jy dz ∧ dx + jz dx ∧ dy) ∧ dt + ρ dx ∧ dy ∧ dz

Define the 2-form F by F := B + E ∧ dt. Show that the four Maxwell’s equations can
be rewritten in an elegant way as:

dF = 0 d (∗F) = J.

Solution: The four Maxwell’s equations can be written as

∇ · E = ρ ⇐⇒ ∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= ρ , (2)

∇ · B = 0 ⇐⇒ ∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 , (3)

∇× E = −∂B
∂t

⇐⇒






∂Ey
∂x − ∂Ex

∂y = − ∂Bz
∂t

∂Ez
∂y − ∂Ey

∂z = − ∂Bx
∂t

∂Ex
∂z − ∂Ez

∂x = − ∂By
∂t

, (4)

∇× B = J +
∂B
∂t

⇐⇒






∂By
∂x − ∂Bx

∂y = jz + ∂Ez
∂t

∂Bz
∂y − ∂By

∂z = jx + ∂Ex
∂t

∂Bx
∂z − ∂Bz

∂x = jy +
∂Ey
∂t

. (5)

We now compute

dF = dB + dE ∧ dt

=


∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z


dx ∧ dy ∧ dz

+
∂Bx

∂t
dt ∧ dy ∧ dz +

∂By

∂t
dt ∧ dz ∧ dx +

∂Bz

∂t
dt ∧ dx ∧ dy

+


∂Ey

∂x
− ∂Ex

∂y


dx ∧ dy ∧ dt +


∂Ez

∂y
−

∂Ey

∂z


dy ∧ dz ∧ dt

+


∂Ex

∂z
− ∂Ez

∂x


dz ∧ dx ∧ dt

=


∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z


dx ∧ dy ∧ dz +


∂Ey

∂x
− ∂Ex

∂y
+

∂Bz

∂t


dx ∧ dy ∧ dt

+


∂Ez

∂y
−

∂Ey

∂z
+

∂Bx

∂t


dy ∧ dz ∧ dt +


∂Ex

∂z
− ∂Ez

∂x
+

∂By

∂t


dz ∧ dx ∧ dt

= 0 ,
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where in the last step we have applied (2) and (3). Next, we compute that

∗F = ∗B + ∗(E ∧ dt)
= Bxdt ∧ dx + Bydt ∧ dy + Bzdt ∧ dz + Exdy ∧ dz + Eydz ∧ dx + Ezdx ∧ dy

Hence,

d(∗F) =


∂Bx

∂y
−

∂By

∂x


dt ∧ dx ∧ dy +


∂By

∂z
− ∂Bz

∂y


dt ∧ dy ∧ dz

+


∂Bz

∂x
− ∂Bx

∂z


dt ∧ dz ∧ dx

+
∂Ex

∂t
dt ∧ dy ∧ dz +

∂Ey

∂t
dt ∧ dz ∧ dx +

∂Ez

∂t
dt ∧ dx ∧ dy

+


∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z


dx ∧ dy ∧ dz

=


∂Bx

∂y
−

∂By

∂x
+

∂Ez

∂t


dt ∧ dx ∧ dy +


∂By

∂z
− ∂Bz

∂y
+

∂Ex

∂t


dt ∧ dy ∧ dz

+


∂Bz

∂x
− ∂Bx

∂z
+

∂Ey

∂t


dt ∧ dz ∧ dx +


∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z


dx ∧ dy ∧ dz

=− jzdt ∧ dx ∧ dy − jxdt ∧ dy ∧ dz − jydt ∧ dz ∧ dx + ρ dx ∧ dy ∧ dz
= J

where we have used (1) and (4) in the last step.
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