MATH 4033 • Spring 2018 • Calculus on Manifolds

Problem Set \#3 - Tensors and Differential Forms • Due Date: 08/04/2018, 11:59PM

1. Show that the Lie derivative of a 1 -form

$$
\alpha=\sum_{i} \alpha_{i} d u^{i}
$$

along a vector field $X=\sum_{j} X^{j} \frac{\partial}{\partial u_{j}}$ is locally expressed as:

$$
\mathcal{L}_{X} \alpha=\sum_{i, j}\left(X^{i} \frac{\partial \alpha_{j}}{\partial u_{i}}+\alpha_{i} \frac{\partial X^{i}}{\partial u_{j}}\right) d u^{j} .
$$

Solution: Denote Φ_{t} to be the flow map of X, then for any p on the manifold, we have

$$
\begin{aligned}
\left(\mathcal{L}_{X} \alpha\right)_{p} & :=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t}^{*} \alpha_{\Phi_{t}(p)} \\
& =\left.\frac{d}{d t}\right|_{t=0} \sum_{i}\left(\alpha_{i} \circ \Phi_{t}\right) d\left(u^{i} \circ \Phi_{t}\right) \quad \text { (Note that } \Phi_{*} \text { and } d \text { commute) } \\
& =\sum_{i, j} \underbrace{\frac{\partial \alpha_{i}}{\partial u_{j}} X^{j}}_{\left.\frac{d}{d t} \alpha_{i} \circ \Phi_{t}\right)}+\left.\alpha_{i} \frac{d}{d t}\right|_{t=0} \frac{\partial\left(u_{i} \circ \Phi_{t}\right)}{\partial u_{j}} d u^{j} \\
& =\sum_{i, j} \underbrace{\frac{\partial \alpha_{i}}{\partial u_{j}} X^{j}}_{\frac{d}{d t}\left(\alpha_{i} \circ \Phi_{t}\right)}+\left.\alpha_{i} \frac{\partial}{\partial u_{j}} \frac{d}{d t}\right|_{t=0}\left(u_{i} \circ \Phi_{t}\right) d u^{j}
\end{aligned}
$$

The proof is completed by showing

$$
\left.\frac{d}{d t}\right|_{t=0}\left(u_{i} \circ \Phi_{t}\right)=\sum_{k} \frac{\partial u_{i}}{\partial u_{k}} X^{k}=\sum_{k} \delta_{i k} X^{K}=X^{i} .
$$

2. Consider a smooth manifold M^{n} and the following symmetric (2,0)-tensors on M :

$$
g=\sum_{i, j} g_{i j} d u^{i} \otimes d u^{j} \quad h=\sum_{i, j} h_{i j} d u^{i} \otimes d u^{j}
$$

where $\left(u_{1}, \ldots, u_{n}\right)$ are local coordinates of M. Suppose the matrix $\left[\delta_{i j}\right]$ is positive definite (all its eigenvalues are positive).
(a) Let $\left(v_{1}, \ldots, v_{n}\right)$ be another local coordinates system, and the local expression of g in terms of this system be:

$$
g=\sum_{i, j} \widetilde{g}_{i j} d v^{i} \otimes d v^{j} .
$$

Express $\widetilde{g}_{i j}$ in terms of $g_{i j}$, and then show that the matrix $\left[\widetilde{g}_{i j}\right]$ is also symmetric and positive definite.

Solution: By chain rule, we have $d u^{i}=\sum_{\alpha} \frac{\partial u_{i}}{\partial v_{\alpha}} d v^{\alpha}$, so

$$
\begin{aligned}
g & =\sum_{i, j} g_{i j} d u^{i} \otimes d u^{j} \\
& =\sum_{i, j} g_{i j}\left(\sum_{\alpha} \frac{\partial u_{i}}{\partial v_{\alpha}} d v^{\alpha}\right) \otimes\left(\sum_{\beta} \frac{\partial u_{j}}{\partial v_{\beta}} d v^{\beta}\right) \\
& =\sum_{i, j, \alpha, \beta} g_{i j} \frac{\partial u_{i}}{\partial v_{\alpha}} \frac{\partial u_{j}}{\partial v_{\beta}} d v^{\alpha} \otimes d v^{\beta} .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\widetilde{g}_{i j}=\sum_{\alpha, \beta} g_{\alpha \beta} \frac{\partial u_{\alpha}}{\partial v_{i}} \frac{\partial u_{\beta}}{\partial v_{j}} . \tag{1}
\end{equation*}
$$

Hence $[\widetilde{g}]=A^{T}[g] A$ where $A=\frac{\partial\left(u_{\beta}\right)}{\partial\left(v_{j}\right)}$. Clearly, $[\widetilde{g}]^{T}=A^{T}[g]^{T}\left(A^{T}\right)^{T}=A^{T}[g] A=$ $[\widetilde{g}]$, so $[\tilde{g}]$ is also symmetric. Also, $[g]$ and $[\tilde{g}]$ are similar matrices, thus $[g]$ is positive definite if and only if $[\widetilde{\mathcal{Z}}]$ is positive definite.
(b) Show that the quantity $\frac{\operatorname{det}\left[h_{i j}\right]}{\operatorname{det}\left[g_{i j}\right]}$ is independent of local coordinates, i.e.

$$
\frac{\operatorname{det}\left[h_{i j}\right]}{\operatorname{det}\left[g_{i j}\right]}=\frac{\operatorname{det}\left[\widetilde{h}_{i j}\right]}{\operatorname{det}\left[\widetilde{g}_{i j}\right]} .
$$

Solution: From (a), we have $[\widetilde{g}]=A^{T}[g] A$ where $A=\frac{\partial\left(u_{\beta}\right)}{\partial\left(v_{j}\right)}$. Similarly, we can show $[\widetilde{h}]=A^{T}[h] A$. Note that A depends only on transition maps but not the tensors (i.e. the same A for both g and h). Hence,

$$
\frac{\operatorname{det}[\widetilde{h}]}{\operatorname{det}[\widetilde{g}]}=\frac{\operatorname{det}\left(A^{T}\right) \operatorname{det}[h] \operatorname{det}(A)}{\operatorname{det}\left(A^{T}\right) \operatorname{det}[g] \operatorname{det}(A)}=\frac{\operatorname{det}[h]}{\operatorname{det}[g]} .
$$

3. Define a 2 -form ω on \mathbb{R}^{3} by

$$
\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Express ω in spherical coordinates (ρ, θ, φ) defined by:

$$
\begin{aligned}
& x=\rho \sin \varphi \cos \theta \\
& y=\rho \sin \varphi \sin \theta \\
& z=\rho \cos \varphi
\end{aligned}
$$

Solution: By direct computation,

$$
\begin{aligned}
d x & =\sin \varphi \cos \theta d \rho+\rho \cos \varphi \cos \theta d \varphi-\rho \sin \varphi \sin \theta d \theta \\
d y & =\sin \varphi \sin \theta d \rho+\rho \cos \varphi \sin \theta d \varphi+\rho \sin \varphi \cos \theta d \theta \\
d z & =\cos \varphi d \rho-\rho \sin \varphi d \varphi \\
d y \wedge d z & =-\rho \sin \theta d \rho \wedge d \varphi+\rho^{2} \sin ^{2} \varphi \cos \theta d \varphi \wedge d \theta+\rho \sin \varphi \cos \varphi \cos \theta d \theta \wedge d \rho \\
d z \wedge d x & =\rho \cos \theta d \rho \wedge d \varphi+\rho^{2} \sin ^{2} \varphi \sin \theta d \varphi \wedge d \theta+\rho \sin \varphi \cos \varphi \sin \theta d \theta \wedge d \rho \\
d x \wedge d y & =\rho^{2} \sin \varphi \cos \varphi d \varphi \wedge d \theta-\rho \sin ^{2} \varphi d \theta \wedge d \rho .
\end{aligned}
$$

Hence, we have

$$
\omega=-\rho^{3} \sin \varphi d \theta \wedge d \varphi .
$$

(b) Compute $d \omega$ in both rectangular and spherical coordinates.

Solution: In rectangular coordinates,

$$
d \omega=d x \wedge d y \wedge d z+d y \wedge d z \wedge d x+d z \wedge d x \wedge d y=3 d x \wedge d y \wedge d z
$$

In spherical coordinates,

$$
d \omega=-\frac{\partial\left(\rho^{3} \sin \varphi\right)}{\partial \rho} d \rho \wedge d \theta \wedge d \varphi==-3 \rho^{2} \sin \varphi d \rho \wedge d \theta \wedge d \varphi
$$

(c) Let S^{2} be the unit sphere $x^{2}+y^{2}+z^{2}=1$ in \mathbb{R}^{3}. Consider the inclusion map $\iota: \mathrm{S}^{2} \rightarrow$ \mathbb{R}^{3}. Compute the pull-back $\iota^{*} \omega$, and express it in terms of spherical coordinates.

Solution: We have $\rho=1, \iota^{*}(d \theta)=d \theta$ and $\iota^{*}(d \varphi)=d \varphi$. Hence,

$$
\begin{aligned}
\iota^{*} \omega & =-\rho^{3} \sin \varphi\left(\iota^{*}(d \theta) \wedge \iota^{*}(d \varphi)\right) \\
& =-\sin \varphi d \theta \wedge d \varphi
\end{aligned}
$$

(d) Let $\delta=d x \otimes d x+d y \otimes d y+d z \otimes d z$ be a symmetric (2,0)-tensor on \mathbb{R}^{3}. Compute $\iota^{*} \delta$, and express it in terms of spherical coordinates.

Solution: Since $\rho=1$, we have

$$
\begin{aligned}
& \iota^{*}(d x)=d\left(\iota^{*} x\right)=d(x \circ \iota)=d x=\cos \varphi \cos \theta d \varphi-\sin \varphi \sin \theta d \theta \\
& \iota^{*}(d y)=d\left(\iota^{*} y\right)=d(y \circ \iota)=d y=\cos \varphi \sin \theta d \varphi+\sin \varphi \cos \theta d \theta \\
& \iota^{*}(d z)=d\left(\iota^{*} z\right)=d(z \circ \iota)=d z=-\sin \varphi d \varphi .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\iota^{*} \delta= & \iota^{*}(d x) \otimes \iota^{*}(d x)+\iota^{*}(d y) \otimes \iota^{*}(d y)+\iota^{*}(d z) \otimes \iota^{*}(d z) \\
= & (\cos \varphi \cos \theta)^{2} d \varphi \otimes d \varphi+(\sin \varphi \sin \theta)^{2} d \theta \otimes d \theta \\
& -(\cos \varphi \cos \theta)(\sin \varphi \sin \theta) d \theta \otimes d \varphi \\
& +(\cos \varphi \sin \theta)^{2} d \varphi \otimes d \varphi+(\sin \varphi \cos \theta)^{2} d \theta \otimes d \theta \\
& +(\cos \varphi \sin \theta)(\sin \varphi \cos \theta) d \theta \otimes d \varphi \\
& +\sin ^{2} \varphi d \varphi \otimes d \varphi \\
= & \sin ^{2} \varphi d \theta \otimes d \theta+d \varphi \otimes d \varphi .
\end{aligned}
$$

4. The purpose of this exercise is to show that any closed 1-form ω on \mathbb{R}^{3} must be exact. Let

$$
\omega=P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z
$$

be a closed 1-form on \mathbb{R}^{3}. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by:

$$
f(x, y, z)=\int_{t=0}^{t=1}(x P(t x, t y, t z)+y Q(t x, t y, t z)+z R(t x, t y, t z)) d t .
$$

(a) Show that $d f=\omega$.

Solution: Taking the exterior derivative of ω, we have

$$
d \omega=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y+\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) d y \wedge d z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) d z \wedge d x
$$

Since ω is closed, we have $d \omega=0$ which implies

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}, \quad \frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z} \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}
$$

Then by using chain rule, we compute that

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\int_{t=0}^{t=1}\left(P+x \frac{\partial P}{\partial x} t+y \frac{\partial Q}{\partial x} t+z \frac{\partial R}{\partial x} t\right) d t \\
& =\int_{t=0}^{t=1}\left(P+x \frac{\partial P}{\partial x} t+y \frac{\partial P}{\partial y} t+z \frac{\partial P}{\partial z} t\right) d t \\
& =\int_{t=0}^{t=1}\left(\frac{d}{d t} t P(t x, t y, t z)\right) d t \\
& =\left.t P(t x, t y, t z)\right|_{t=0} ^{t=1} \\
& =P(x, y, z)
\end{aligned}
$$

Similarly, we have

$$
\frac{\partial f}{\partial y}=Q(x, y, z), \quad \frac{\partial f}{\partial z}=R(x, y, z)
$$

Hence,

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z=P d x+Q d y+R d z=\omega
$$

(b) Point out exactly where you have used the fact that $d \omega=0$ in your solution to (a).

Solution: In (a), we have used the fact that $d \omega=0$ everywhere on \mathbb{R}^{3} to derive the equalities

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}, \quad \frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}
$$

which are then used to convert the integral:

$$
\int_{t=0}^{t=1}\left(P+x \frac{\partial P}{\partial x} t+y \frac{\partial Q}{\partial x} t+z \frac{\partial R}{\partial x} t\right) d t=\int_{t=0}^{t=1}\left(P+x \frac{\partial P}{\partial x} t+y \frac{\partial P}{\partial y} t+z \frac{\partial P}{\partial z} t\right) d t
$$

(c) Explain why your solution to (a) would fail if the domain of ω is $\mathbb{R}^{3} \backslash\{p\}$ (where p is a fixed point in \mathbb{R}^{3}).

Solution: If the domain of ω is $\mathbb{R} \backslash\{p\}$, then either P, Q, R is undefined at p. Hence it does not make sense to talk about

$$
\left.\frac{\partial Q}{\partial x}\right|_{p}=\left.\frac{\partial P}{\partial y}\right|_{p},\left.\quad \frac{\partial R}{\partial y}\right|_{p}=\left.\frac{\partial Q}{\partial z}\right|_{p},\left.\quad \frac{\partial P}{\partial z}\right|_{p}=\left.\frac{\partial R}{\partial x}\right|_{p}
$$

If the straight line joining $(0,0,0)$ to (x, y, z) passes through this point p, then the integrand in

$$
\int_{t=0}^{t=1}\left(P+x \frac{\partial P}{\partial x} t+y \frac{\partial Q}{\partial x} t+z \frac{\partial R}{\partial x} t\right) d t
$$

is not continuous. It may not be legitimate to switch $\frac{\partial}{\partial x}$ and the integral sign.
5. Consider \mathbb{R}^{4} with coordinates (t, x, y, z), which is also denoted as $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ in this problem. Denote $*$ to be the Minkowski Hodge-star operator on \mathbb{R}^{4} (see P.104).
(a) Compute each of the following:

$$
\begin{array}{lll}
*(d t \wedge d x) & *(d t \wedge d y) & *(d t \wedge d z) \\
*(d x \wedge d y) & *(d y \wedge d z) & *(d z \wedge d x)
\end{array}
$$

Solution: By direct computation, we have

$$
\left.\begin{array}{rr}
*(d t \wedge d x)=-d y \wedge d z & *(d t \wedge d y)=-d z \wedge d x
\end{array} \quad *(d t \wedge d z)=-d x \wedge d y\right)
$$

(b) The four Maxwell's equations are a set of partial differential equations that form the foundation of electromagnetism. Denote the components of the electric field E, magnetic field B, and current density J by

$$
\begin{aligned}
\mathrm{E} & =E_{x} \mathrm{i}+E_{y} \mathrm{j}+E_{z} \mathrm{k} \\
\mathrm{~B} & =B_{x} \mathrm{i}+B_{y} \mathrm{j}+B_{z} \mathrm{k} \\
\mathrm{~J} & =j_{x} \mathrm{i}+j_{y} \mathrm{j}+j_{z} \mathrm{k}
\end{aligned}
$$

All components of E, B and J are considered to be time-dependent. Denote ρ to be the charge density. The four Maxwell's equations assert that:

$$
\begin{aligned}
\nabla \cdot \mathrm{E} & =\rho & \nabla \cdot \mathrm{B} & =0 \\
\nabla \times \mathrm{E} & =-\frac{\partial \mathrm{B}}{\partial t} & \nabla \times \mathrm{B} & =\mathrm{J}+\frac{\partial \mathrm{E}}{\partial t}
\end{aligned}
$$

We are going to convert the Maxwell's equations using the language of differential forms. We define the following analogue of E, B, J and ρ using differential forms:

$$
\begin{aligned}
E & =E_{x} d x+E_{y} d y+E_{z} d z \\
B & =B_{x} d y \wedge d z+B_{y} d z \wedge d x+B_{z} d x \wedge d y \\
J & =\left(j_{x} d y \wedge d z+j_{y} d z \wedge d x+j_{z} d x \wedge d y\right) \wedge d t+\rho d x \wedge d y \wedge d z
\end{aligned}
$$

Define the 2-form F by $F:=B+E \wedge d t$. Show that the four Maxwell's equations can be rewritten in an elegant way as:

$$
d F=0 \quad d(* F)=J
$$

Solution: The four Maxwell's equations can be written as

$$
\begin{gather*}
\nabla \cdot E=\rho \Longleftrightarrow \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=\rho, \tag{2}\\
\nabla \cdot B=0 \Longleftrightarrow \frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}=0, \tag{3}\\
\nabla \times E=-\frac{\partial B}{\partial t} \Longleftrightarrow\left\{\begin{array}{l}
\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\frac{\partial B_{z}}{\partial t} \\
\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t} \\
\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\frac{\partial B_{y}}{\partial t}
\end{array},\right. \tag{4}\\
\nabla \times B=J+\frac{\partial B}{\partial t} \Longleftrightarrow\left\{\begin{array}{l}
\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}=j_{z}+\frac{\partial E_{z}}{\partial t} \\
\frac{\partial B_{z}}{\partial y}-\frac{\partial B_{y}}{\partial z}=j_{x}+\frac{\partial E_{x}}{\partial t} \\
\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}=j_{y}+\frac{\partial E_{y}}{\partial t}
\end{array}\right. \tag{5}
\end{gather*}
$$

We now compute

$$
\begin{aligned}
d F= & d B+d E \wedge d t \\
= & \left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right) d x \wedge d y \wedge d z \\
& +\frac{\partial B_{x}}{\partial t} d t \wedge d y \wedge d z+\frac{\partial B_{y}}{\partial t} d t \wedge d z \wedge d x+\frac{\partial B_{z}}{\partial t} d t \wedge d x \wedge d y \\
& +\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right) d x \wedge d y \wedge d t+\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right) d y \wedge d z \wedge d t \\
& +\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right) d z \wedge d x \wedge d t \\
= & \left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right) d x \wedge d y \wedge d z+\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}+\frac{\partial B_{z}}{\partial t}\right) d x \wedge d y \wedge d t \\
& +\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}+\frac{\partial B_{x}}{\partial t}\right) d y \wedge d z \wedge d t+\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}+\frac{\partial B_{y}}{\partial t}\right) d z \wedge d x \wedge d t \\
= & 0,
\end{aligned}
$$

where in the last step we have applied (2) and (3). Next, we compute that

$$
\begin{aligned}
* F & =* B+*(E \wedge d t) \\
& =B_{x} d t \wedge d x+B_{y} d t \wedge d y+B_{z} d t \wedge d z+E_{x} d y \wedge d z+E_{y} d z \wedge d x+E_{z} d x \wedge d y
\end{aligned}
$$

Hence,

$$
\begin{aligned}
d(* F)= & \left(\frac{\partial B_{x}}{\partial y}-\frac{\partial B_{y}}{\partial x}\right) d t \wedge d x \wedge d y+\left(\frac{\partial B_{y}}{\partial z}-\frac{\partial B_{z}}{\partial y}\right) d t \wedge d y \wedge d z \\
& +\left(\frac{\partial B_{z}}{\partial x}-\frac{\partial B_{x}}{\partial z}\right) d t \wedge d z \wedge d x \\
& +\frac{\partial E_{x}}{\partial t} d t \wedge d y \wedge d z+\frac{\partial E_{y}}{\partial t} d t \wedge d z \wedge d x+\frac{\partial E_{z}}{\partial t} d t \wedge d x \wedge d y \\
& +\left(\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}\right) d x \wedge d y \wedge d z \\
= & \left(\frac{\partial B_{x}}{\partial y}-\frac{\partial B_{y}}{\partial x}+\frac{\partial E_{z}}{\partial t}\right) d t \wedge d x \wedge d y+\left(\frac{\partial B_{y}}{\partial z}-\frac{\partial B_{z}}{\partial y}+\frac{\partial E_{x}}{\partial t}\right) d t \wedge d y \wedge d z \\
& +\left(\frac{\partial B_{z}}{\partial x}-\frac{\partial B_{x}}{\partial z}+\frac{\partial E_{y}}{\partial t}\right) d t \wedge d z \wedge d x+\left(\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}\right) d x \wedge d y \wedge d z \\
= & -j_{z} d t \wedge d x \wedge d y-j_{x} d t \wedge d y \wedge d z-j_{y} d t \wedge d z \wedge d x+\rho d x \wedge d y \wedge d z \\
= & J
\end{aligned}
$$

where we have used (1) and (4) in the last step.

