MATH 4033 e Spring 2018 e Calculus on Manifolds
Problem Set #3 e Tensors and Differential Forms ¢ Due Date: 08/04/2018, 11:59PM

1. Show that the Lie derivative of a 1-form

o= adu
i
- is locally expressed as:

d i .
Lxa=) (Xl a(x] + E;X ) du.
i

along a vector field X =}, XJ

Solution: Denote ®; to be the flow map of X, then for any p on the manifold, we

have
. d *
(Exe)y =G| Pivotr)
= % Y (aio ®;)d(u' o ;) (Note that ®, and d commute)
=0
-y a"‘lxj Lok dwio®y)
i ¥] _ dt t=0 au]
%(“P‘Pt)
o d ;
- . ]
12 e TG ar |, (1° P
( O(Df)

The proof is completed by showing

d .
a ul ] CIDt Z 251‘ka = X
t= k k

2. Consider a smooth manifold M" and the following symmetric (2, 0)-tensors on M
g=)Y gijdu' @du h=Y hjdu' @du
i,j i,j
uy) are local coordinates of M. Suppose the matrix [g;] is positive definite

where (uy,...,

(all its eigenvalues are positive).
vy) be another local coordinates system, and the local expression of g in

(a) Let (v, ...,
terms of this system be: ‘ ‘
g=) gjdv' ®@dv.
ij
Express g;; in terms of g;;, and then show that the matrix [g;;] is also symmetric and

positive definite.
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Solution: By chain rule, we have du' =Y, %dv“, SO

g =) _gij du’ @ du/
ij

Yo [y 9% g 9 48
— ;j:gl] (; av“dv ) ® (Z avﬁdv

B

- us
= Z Sij o o do* @ doP

i p 0 n avﬁ

Thus, we have
- du, dug
= — . 1
a(up)

Hence [g] = AT[¢]A where A = 30, Clearly, [3]7 = AT[g]T(AT)T = AT[g]A =

[g], so [g] is also symmetric. Also, [¢] and [g] are similar matrices, thus [g] is
positive definite if and only if [g] is positive definite.

det[hl']‘]
det [gij]

(b) Show that the quantity is independent of local coordinates, i.e.

det[hl-]-] _ det[hl-]-]
det[gij] det[gi]'] '

Solution: From (a), we have [§] = AT[¢]A where A = %. Similarly, we can

show [i] = AT[h]A. Note that A depends only on transition maps but not the
tensors (i.e. the same A for both ¢ and /). Hence,

det[71] _ det(AT) det[h] det(A)  det[h]
det[g]  det(AT)det[¢]det(A)  detg]’

3. Define a 2-form w on R® by
w=xdyNdz+ydz Ndx+zdx N\dy.
(a) Express w in spherical coordinates (p, 6, ¢) defined by:

X = psin ¢ cos 6
Yy = psingsind

Z = pCosQ
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Solution: By direct computation,

dx = sinpcos8dp + pcos ¢ cost de — psin @ sin 6 db

dy = sin psinfdp + p cos ¢ sinfdep + p sin ¢ cos 0 do

dz = cos@dp —psingde
dy Ndz = —psinfdp Adg + p*sin® g cos 8 dg A df + psin ¢ cos ¢ cos §dO A dp
dz Adx = pcosBdp Adg + p*sin® psin 8 de A d6 + psin @ cos psindb A dp
dx A dy = p*sin @ cos pdg A df — psin® ¢ d A dp.

Hence, we have
w=—p’sinpdd Ade.

(b) Compute dw in both rectangular and spherical coordinates.

Solution: In rectangular coordinates,
dw =dx Ndy Ndz+dy Ndz Ndx +dz Ndx Ndy = 3dx Ndy N dz.

In spherical coordinates,

B 9(0%sin @)

dw = 30

do ANdO Ndp == —3p?sin pdp AdO Adg.

(c) Let S? be the unit sphere x> + y? + z2> = 1 in R3. Consider the inclusion map ¢ : $> —
R3. Compute the pull-back /*w, and express it in terms of spherical coordinates.

Solution: We have p =1, 1*(df) = df and (*(d¢) = d¢. Hence,

Fw = —psing (1*(d0) A (dg))
= —sin¢@df Nde.

(d) Let 6 = dx ® dx + dy @ dy + dz @ dz be a symmetric (2,0)-tensor on R3. Compute
1*6, and express it in terms of spherical coordinates.

Solution: Since p = 1, we have

d(xo1) =dx = cos ¢cosbdp — sin ¢sin 6 d6
f(dy) =d("y) =d(yot) = dy = cos ¢sin@ dg + sin ¢ cos 6 do
d(zoi) =dz = —singdg.
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Hence,

F6 =1"(dx) @ 1" (dx) + " (dy) @ 1* (dy) + 1" (dz) @ 1" (dz)
:(cosgocosf))quo@dgo—i— (singosin9)2d9®d9
— (cos @ cosB) (singsin®) dd @ dg
- (cosqosinG)chp@dq)—l— (sin(pcos(9)2d9®d9
+ (cos ¢ sin6) (sin g cosb) do @ dg
+sin® pdo @ de
=sin® pdf ® do + dg ® dg.

4. The purpose of this exercise is to show that any closed 1-form w on R® must be exact. Let
w = P(x,y,z)dx+ Q(x,y,z)dy + R(x,y,z) dz

be a closed 1-form on R3. Define f : R® — R by:

t=1
flx,y,z) = / (xP(tx, ty, tz) + yQ(tx, ty, tz) + zR(tx, ty, tz)) dt.

t=0
(a) Show thatdf = w.

Solution: Taking the exterior derivative of w, we have
_ (0Q oP JR 9Q JoP OR
dw—<ax ay)dx/\dy+<ay az)dy/\dz—i—( . x)dz/\dx.
Since w is closed, we have dw = 0 which implies

90 9P 9R 9Q 9P dR

ox 9y’ dy 9z 0z ox

Then by using chain rule, we compute that

of [ oP,  9Q, OR
), (P—i—xat—l—ygt—i—zgt) dt

—/t_l P—i—xa—Pt—i— a—pt—i—za—Pt dt
o ox yay 0z

t=1 d
:/t—O <EtP(tx,ty,tz)> dt

t=1

= tP(tx, ty,t
(tx, ty, Z)’tzo
= P(x,y,2)

Similarly, we have

of _ of _

W Q(x,y,2), 5 = R(x,y,z)
Hence, 5 ’f af

df = adx—k @dy—i— gdz = Pdx + Qdy + Rdz = w
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(b) Point out exactly where you have used the fact that dw = 0 in your solution to (a).

the equalities

which are then used to convert the integral:

—0 ox ox ox —0

Solution: In (a), we have used the fact that dw = 0 everywhere on R® to derive

90 _op 9R_aQ P _aK
ox oy’ dy 9z 9z Ix

t=1 t=1
/ <P+xa—Pt+ya—Qt+za—Rt> dt:/ <P+xg—it+yg—ly)t+za—1)t> dt
t t

0z

(c) Explain why your solution to (a) would fail if the domain of w is R3\{p} (where p

is a fixed point in R3).

Hence it does not make sense to talk about

aQ| _aP| 9R| _ 2Q

x|, oyl ayl|, oz

oP

dz

4

14 ay

7
P
integrand in

—0 ox ox ox

Solution: If the domain of w is R\ {p}, then either P, Q, R is undefined at p.

p

If the straight line joining (0,0,0) to (x,y, z) passes through this point p, then the

t=1
/ <P+xa—Pt+ya—Qt+za—Rt
t

>dt

. . )
is not continuous. It may not be legitimate to switch —

ox

_9R
Cox

p

and the integral sign.

5. Consider R* with coordinates (t,x,y,z), which is also denoted as (xo, x1, X2, x3) in this
problem. Denote * to be the Minkowski Hodge-star operator on R* (see P.104).

(a) Compute each of the following:

x(dt A\ dx) *(dt A\ dy)
*(dx A dy) *(dy A dz)

*(dt \dz)
*(dz N dx)

Solution: By direct computation, we have

x(dt Ndx) = —dy ANdz  x(dt Ndy) = —dz N dx
x(dx Ndy) = dt Ndz x(dy Ndz) = dt Ndx

x(dt Ndz) = —dx Ndy
x(dz Ndx) = dt Ndy

(b) The four Maxwell’s equations are a set of partial differential equations that form
the foundation of electromagnetism. Denote the components of the electric field E,

magnetic field B, and current density J by
E = Exi+Ejj+ E:k
B = Byi+ Byj + B:k
J= jxi +]yJ +jzk
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All components of E, B and J are considered to be time-dependent. Denote p to be
the charge density. The four Maxwell’s equations assert that:
V-E=p V-B=0
0B oE
V xE= —35f VxB=J+ M
We are going to convert the Maxwell’s equations using the language of differential
forms. We define the following analogue of E, B, J and p using differential forms:
E=Eydx+E,dy+E.dz
B = Bydy Adz+ Bydz Adx + B, dx N dy
] = (jxdy Ndz + jydz Ndx + j.dx Ndy) Ndt +pdx Ndy N dz
Define the 2-form F by F := B + E A dt. Show that the four Maxwell’s equations can
be rewritten in an elegant way as:

dF =0 d(xF)=].
Solution: The four Maxwell’s equations can be written as
_ 0E, OJE, OE,
V- E=p <= Y W g—P ’ 2)
_ 0By 9B, 0B,
V- B=0  — oy e =0, (3)
e
9B aEx o, aBt
V><E:—§<:> a_f_a—zy:—a—f" , (4)
OE; _ 9E _ _ 9By
0z ox ot
9By aB JE
X _|_ Z
v B aB aagz 3B ]Z E)E,C 5
XB=]+or <= (G~ F =it % 6)
s
We now compute
dF =dB +dE Ndt
0By 9dBy 0B,
_(ax ay > >d ANdy Ndz
an oB 0B,
5 dt Ndy Ndz + == FY 5
JoE, OE, JdE, OJE,
W ay)dX/\dyAdt+(W—a—>d]//\d2/\dt
aE" - )d Adx A dt
aB 0B, JdE, OJE, 0B,
( . ay 5 >dx/\dy/\dz—i—<ax - 3y at>clx/\dy/\dt
oE, BEy 0By JdE, OJE, 0B,
ay oz + at)dy/\d /\dt+<az a)("‘w)dZ/\dX/\dt
=0,

Page 6



MATH 4033 Tensors and Differential Forms Problem Set #3

where in the last step we have applied (2) and (3). Next, we compute that

«F = *B + x(E A dt)
= Bydt Ndx + Bydt Ndy + B.dt ANdz + Exdy ANdz + Eydz Ndx + Edx A dy

Hence,
dB, 9By 0B, 9B,
d(*l—")_<ay ax>thdx/\dy+(aZ ay>dt/\dy/\dz
0B, 0B,
<8x aZ)dt/\dz/\dx
aEx oE E,
o dt Ndy Ndz + —= 5 Y
JdE, OJE, OE,
<8x ay 5 )d Ndy Ndz

_ (0B, 9B, OE, 0B, 0B,  OE.
_<ay oy + 5 dt Ndx Ndy + az 3y + 5 dt Ndy A\ dz

dB, 0By OJE, JdE, OJE, OE,
<8x — + 5 )thdz/\dx—i—(a + — By 5 dx Ndy N\dz
=—Jdt Ndx Ndy — jxdt Ndy Ndz — j,dt Ndz Ndx +pdx Ndy A\dz

=]

where we have used (1) and (4) in the last step.
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