MATH 4033 e Spring 2018 e Calculus on Manifolds
Problem Set #2 o Abstract Manifolds ¢ Due Date: 11/03/2018, 11:59PM

Instructions: “Outsource” all topological issues to MATH 4225. Make fair use of the word “similarly”
to reduce your workload.

1. Suppose X is a n-dimensional topological manifold in R"*! (where n > 2) equipped with
a family of local parametrizations {F, : U, — X} covering the whole X and satisfying the
following conditions:

1. Each F, is smooth as a map from U, to R+
2. Each F, is a homeomorphism onto its image F, (U ).

3. Regarding (x1,...,x,11) = Fa(uy,...,uy,), the Jacobian matrix

a(xl, .. .,xn+1)
A(ug, ... uy)

at every (uy,...,u,) € Uy has a trivial null-space.

(a) Show that X is an n-dimensional smooth manifold.

Solution: The three conditions are basically higher dimensional analogue of reg-
ular surfaces in IR3. The crucial part is to show the transition map Fgl o Fy be-
tween any pair of overlapping parametrizations is smooth. We mimic what was
done in the regular surface case, namely making use of the non-zero component
of the normal vector to apply the implicit function theorem.

( ----- xn+l)

First note that columns of the Jacobian matrix W are vectors {9F TG oF

L
Condition (3) shows these vectors are linearly independent, hence they span an
n-dimensional subspace in ]R”+1 Take any non-zero vector N orthogonal to all of
aF ’s. Then, the n + 1 vectors { S au ,N} are linearly independent. Then the

determmant of the following (n + 1) x (n + 1) matrix:

oF oF
T A P

Express N = (y1,...,Yu11) € R"™, then by co-factor expansion we have:

ntl . O(X1, -+, X1, Xig1, **  Xng1)
-1 i det s s AI—17s Ai+1/ 7 An+1 0.
;( )yl a(ul,"',un) ;é

Therefore, at least one of the determinants

(X1, -+, X1, Xig1, * , Xng1)
det 0
a(ulr"' /un) #

Consider 77; : R"*! — R" be the projection map

(-xll e /xn+1) — (x1/ X1, X1, /xn+1)-

Then, the composition 77; o F : R" — IR" is locally invertible. The rest of the proof
then goes through as in the regular surface case.
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(b) Show further that ¥ is a submanifold of R"*1.

Solution: The key observation is that

(] = (X1, .., Xp41)
* a(u, ..., uy)

which has trivial null-space. It is equivalent to saying that ¢, is injective, and so ¢
is an immersion.

2. The complex projective plane CIP! is defined as follows:

C]Pl = {[Zo : Zl] : (Z(),Zl) 7'é (0,0)}

Here z(,z; are complex numbers, and we declare [zg : z1] = [wp : wq] if and only if
(zo,2z1) = AMwp, wy) for some A € C\{0}.

(a) Show that CPP! is a smooth manifold of (real) dimension 2.

Solution: We define parameterizations

Fo: IRZ —){[20221]220750}:00
(ug,up) — [1:uy + iug]

Fi: R* —{[z0:z1]:21 #0} = Oy
(01,02) — [Ul + ivy : 1]‘

Then Og U O; = CP".
Next, we check the smoothness of transition maps. On R?\{(0,0)}

F O Fo(ul,LQ) = F1 ([1 Lll + 11/{2])

-1 .
u1+zuz'
()
”1+”2 ”1+”2

- (@taara)
ul—l—uz ul—l—uz

which is smooth. Similarly, Fo~!' o Fy is also smooth. Hence, CP! is a smooth
manifold of (real) dimension 2.

(b) Show that CP' and the sphere S? are diffeomorphic. [Hint: consider stereographic
projections]

Solution: Define @ : CPP' — 82 such that

. 2uq 2up u%+u§—l>
D((1:up+iuy|) = p ’
(l ! 2l) <u%+u%+1 uf +ud+1"uf +u+1

®([0:1]) = (0,0,1).
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Also, we define ¥ : 2 — CIP' such that

X1 +ixy .
1, fx 1,
Y (x1,x2,%3) = [ 1—X3} if x5 7 .
0,1] if x5 = 1
Then,
Do (x1,x2,x3)
X1 +ixy .
== f 1,
_ @([1 1—x3}> if x3 #
@ ([0:1]) if x3 =1
2x1(1 — x3) 2x2(1 — x3) x2+x3—1—x3+2x) .
2. 2 2/ 2 2 2/ 2 2 2 if x3 # 1,
=q\xf+x5+(1—x3)?2 a7 +x5+ (1 —x3)2 27+ x5+ 1+ x5 —2x3
(0,0,1) if x3 = 1
Z(X1,x2,x3)

where we have used the fact x7 + x3 + x5 = 1 to simplify the expressions, and

‘I’Oq)([l : u1+iuz])
Yod([0:1]) =(0,0,1)

< 214 2uy Ut 4 us — 1)
= w+ud+ 1" +ud+ 1 ud+ud+1
¥(0,0,1)
)1 uy +iup)
[0:1]
Hence, ¥ = & 1.
Suppose
2u 2up u +ul—1

Gafur 1) = ( )R s\(001),

w+ud+1" ud+ui+1" ur+ud+1

204 209 1—0%—0%
v4+v3+1" vl +0v3+1" vi+0i41

G1(v1,02) = ( > :R? = $%\{(0,0,-1)}

are local parameterizations of 52,
On {® o Fy(IR?)} N{Go(IR?)}, we have

Go_l odo Fo(ul,uz) = Go_1 o q)([l TUp+ iuz])

e -1 2uq 2uy M%+M%—1>
0 w+ui+ 1w +ud+ 1w +ui+1

= (uq,u2).

which means Gy ! o ® o Fy is identity map. It is easy to check for other parame-
terizations in a similar way. So, ® is smooth.
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On {¥ o Go(R?)} N{Fo(IR?)}, we have

_ _ 2u 2u u? +ul—1
Fo 1o‘I’oGg(u1,u2):Fg 10‘1’( 5 ; ;3 ; , ; % >
ui+u; +1 up+u;+1 uy+u;+1
= Fgfl[l U+ iuz]
= (uliuZ)-
oY o Gg is identity map. It is also easy to check for other

which means Fo !
parameterizations in a similar way. So, ¥ is smooth.

Therefore, CIP! and the sphere S? are diffeomorphic.

3. Consider the following equivalence relation ~ defined on IR?

(x,y) ~(,y) <= (,y)=((-1)"x+m, y+n) for some integers m and n.

(a) Sketch an edge-identified square to represent the quotient space R?/ ~

(b) Consider the two parametrizations of R?/ ~:
x (0.5,1.5) — R?*/ ~

Gy:(0,1) x (0,1) = R?/ ~ Gy :(0,1)
(x,y) = [(x,y)]

(0, y) = [(xy)]
Find the transition map G, ' o G;.
>1oGyis (0,1) x {(0,0.5)U(0.5,1)}. From the equiv-

Solution: The domain of G,
alence relation, [(x,y)] = [(1 — x,y + 1)]. Hence, for any (x,y) in the domain, we

have
ey = 46 (A= xy+ 1)) if (xy) €(0,1) % (0,05)
G eGtny {2<[< ) it (x,y) € (0,1) x (05,1)
{(1 x,y+1) if (x,y) € (0,1) x (0,0.5)
(x,v) if (x,y) € (0,1) x (0.5,1)

(c) Write down a diffeomorphism between R?/ ~ and the Klein bottle K in IR* described
p

in Example 2.16.

Solution: The diffeomorphism @ : R?/ ~ — K is

(cos2mx + 2) cos 27ty

| (cos27mx + 2) sin 27ty
®([x,y]) = sin 27tx cos 1ty
sin 27tx sin 7ty

One can check that @ is well-defined, bijective, and is a diffeomorphism. Detail

is omitted here.

4. Consider the following subset of R? x RIP!

M= {((xl,xz), (11 :y2]> € R? x RP! X1Y2 = ylxz}
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(a) Show that M is a smooth 2-manifold by considering the following parametrizations:
F(ul,uz) = <(M1u2, 1/[2), [M] : 1])
G(o1,02) = (<v1, 0102), [1 Uz])

Solution:

M= <(x1,x2), [y : y2]> € R? x RP!

X1Y2 = Y1X2, Y1 # 0}

{
U { <(x11X2), [y : yz]) € R? x RP!
{

X1Y2 = Y1X2, Y2 F 0}

= ((xlfxl—)r [1: E]) € R? x RP!

X1 X1
U { <(x2ﬁ,x2), 1, 1]) € R? x RP!
X2 X2

X1Y2 = Y1X2, Y1 # 0}

X1Y2 = Y1X2, Y2 # 0} .

Hence, F(IR?) and G(IR?) is a covering of M.
The domain of the transition map G~! o F is R?\{u; = 0}.

Glo Fug,up) = G! ((uluz, uy), [u 1])

—G™! <(u1u2, ”1”2i)’ [1: i]>

uq uq
1
= | Uz, — |,
U

which is smooth. The domain of the transition map F~! o G is R?\{v, = 0}.

Flo G(Ul,Uz) =F! ((Ulf 0102)/ [1 : vZ])

=F1 ((0102%, 0102), [l : 1]>

02
( : )
- —,0102 |,
02
which is smooth.

Thus, M is a smooth 2-manifold.

(b) Consider the two projection maps 711 : M — R? and 7, : M — RPP! defined by:
4| ((lexz), (1 1]/2]) = (x1,x2)
7T2((x1,x2)z 1 iyz]) =yl

i. Show that 7r; !(p) is either a point, or diffeomorphic to RP'.
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ii.

Solution: Case 1: When x; # 0 and x, # 0.
Then y1 # 0 and y, # 0. We have [y; : y2] = [x1 : x2]. Hence,

iy (x1,x0) = ((xl,xz), [x1 : xz]>
is a point.

Case 2: When x1 = 0 and x, # 0.
Then y; = 0 and we have [y; : y2] = [0 : 1]. Hence,

nl_l(xl,xz) = ((0, x2),[0: 1])
is a point.

Case 3: When x1 # 0 and x, = 0.
Then y, = 0 and we have [y; : y2] = [1: 0]. Hence,

71'1_1(3(1,)(2) = ((xl,O), [1: O])
is a point.

Case 4: When x1 = 0 and x, = 0.
Then (y1,y2) can be any point in IR? but (0,0). Hence,

7T1_1(x1,x2) = ((0,0), 1 ¢3/2]>

Which is diffeomorphic to RIP’.

Show that 71, is a submersion.

Solution: Let

Hi()) =[1:¢: R — {[x:y”x;éO}
Ho(t) = [t: 1] : R — {[x : y]|y # 0}

be a local parameterizations of RIP'.
On R? Hy ™' o mp 0 F(u1,u2) = 1y,

d

ey = [ (e o2 oF)

d

. a—uz (Hgf1 07y 0 F)

Fl(pj
=[10]
#0,

Hence, it is surjective.
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On ]Rz, Hlfl O 7l O G(Ul,Uz) = Uy,

d d
[772+] :[ Hi 'omoG — (Hi 'omoG ]
P 0v 01 ( ) G1(p) 802 < ) G-1(p)
=[01]
# 0,

Hence, it is surjective.
Thus, 71 is a submersion.

5. The tangent bundle TM of a smooth n-manifold M is the disjoint union of all tangent
spaces of M, i.e.

= J{ptxToM={(p,Vp) : p € Mand V, € T,M}.
peM

(a) Show that TM is a smooth 2n-manifold. [Again, skip the topological parts, but show
detail work of the differentiable parts.]

Solution: Given any local parametrizaiion F(uy,...,uy) : U — O of M, we de-
fine an induced local parametrization F : ¢/ x R" — TM of the tangent bundle
TM by:

_ ) 0
F(ul,...,un,al,...,a”) = (F(ul,...,un), ala—ul + . +tz”%) € TM.

Suppose G(vl,...,zin) is another local parametrization of M, and its induced
parametrization is G given by:

~ 0 0
G(Ul,...,vn,bl,...,bn) = <G(Ul,...,vn), blﬁ + - +bn£) .
Since B%f =Yy 33" oo by regarding (v1,...,v,) = G 1o F(uy,...,uy), we can find

the transition map between F and G:
G! oE(ul,...,un,al,...,a”)

0 d
f— _1 1_ .« .. n
=G <F(u1,...,un), a o +---+a Bun)

_g <F<ul,..., z%i+ "y a)

duq dvy Oy JU

+
(HM,...,M,;( )2

. Jv . dv
1, a2 jZon
(G Fluy, ..., u E au] ..,Ej ”au]-)

Since G 1o F is sgwotlrk and hence each vy is a smooth function of (u3, . Ny ””)N'
we conclude that G~! o F is smooth as well. This shows the transition map G~ 1 oF
is smooth.
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(b)

(©)

The induced atlas {f“ : Uy x R" — TM} cover the whole TM, as for each
(p, V) € TM, we can first cover p € M by a local parametrization F, : Uy — M,
then its induced local parametrization F covers all pairs (p, V) € {p} x T,M.

Show that the map 77 : TM — M defined by 7(p, V},) := p is a submersion.

Solution: We need to find the tangent map 7, and show it is surjective. Suppose
F(uq,...,u,) is a local parametrization of M, then:

FflonoF(ul,...,un,al,...,a”)

= F1o7T<F(u1,...,un),ali+~~-—|—a” J >

duy duy,
=F1 (F(ul,...,un))

= (ul,...,un)

Hence, the Jacobian of F~! o 7 o F is given by:

o(uy, ..., uy)

.| = D(F! F) =
[7-[] ( oTo ) a(ull"-/u}’l/all""an)

= [In O]/

which has full rank. Hence (7.), @ T(,v)(TM) — T,M is surjective for any
(p,V) € TM.

Define the subset £y := {(p,0,) € TM : p € M} where 0, is the zero vector in T, M.
This set X is called the zero section of the tangent bundle. Show that ¥ is a smooth
n-manifold diffeomorphic to M, and that it is a submanifold of TM.

Solution: Given any local pzirametrization F(uy,...,u,) of M, we define an in-
duced local parametrization F(uy, ..., u,) of Xg by:

d d
Fluy,...,uy) = <F(u1,...,un),08—ul+...+oaun>.

Clearly, given another local parametrization G(vy,...,v,), the transition of the
induced parametrizations of X is given by:

G oF(uy,...,up) =G YoF(uy,...,u,),

which is smooth. It is clear that these induced parametrizations cover the whole
20. This shows X is a smooth manifold.

To show X is diffeomorphic to M, we define ® : M — ¥ by:
@(p) == (p,0p).

Then clearly Flodo F(uy,..., un) = (u1,...,u,), which is smooth. The map
@ is bijective with ®(p,0,) = p. The inverse @' is smooth too as Fo ® ! o

F(uq,...,un) = (u1,...,uy). This concludes M and X are diffeomorphic.
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To show X is a submanifold of TM, we need to show that :: ¥y — TM is an
immersion.

FlotoF(uy,... u)

0 d
= 1 u —+ -+ 0—
F OL(F( 1,...,Mn),oaul Oaun>

d d
— g1
=F (F(ul,...,un), 08u1 + +Oaun>

= (uq,...,uy,0,...,0).

Hence, the tangent map ¢, is presented by the matrix:

] = [{)]

whose columns are linearly independent. Therefore, ¢, is injective.

(d) Now suppose M is just a Ck-manifold (where k > 2), then TM is a C""@-manifold?

Solution: According to (a), the transition maps of TM are given by:

6’1oﬁ(ul,...,un,al,...,a”) = (Gl (ug, ..., u Z ]801 Z ]avn>'

au] au]

If M is just a Ck-manifold, then (vy,...,v,) = G ' oF(uy,...,u,) is C¥, and hence
each ’ is Ck-1, Hence TM is a Ck~ 1—marufold

6. A Lie group G is a smooth manifold such that multiplication and inverse maps

u:GxG—=aG v:G—=G
(g, 1) — gh g g !

are both smooth (C®) maps. As an example, GL(n,R) is a Lie group since it is an open
subset of M, x,(R) = IR”Z, hence it can be globally parametrized using coordinates of

R"”. The multiplication map is given by products and sums of coordinates in ]R”2 hence
it is smooth. The inverse map is smooth too by the Cramer’s rule A~! = det ad](A) and

that det(A) # 0 for any A € GL(n, R).
(a) Recall that T(,,)(G x G) can be identified with .G ® T.G = {(X,Y) : X, Y € T.G}.
i. Show that the tangent map of u at (e, e) is given by:

(1) ) (X, Y) = X+ Y.

Solution: Let F(uy,...,u,) be a local parametrization of G covering e, then

(F X F)(ul,...,un,vl,...,vn) = (F(ul,...,un),F(vl,..‘,vn))
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parametrizes G x G near (e,e). Parametrize G near y(e,e) = e by the same
parametrization F(ws, ..., w,), with different coordinates label to avoid con-
fusion.

In order to compute ., we first need to find F~! o o (F x F):

Fflo‘uo(Fx F)(uy, ..., un,01,...,00)
=F You(F(uy,...,un), F(vi,...,vn))
= F’l(F(ul,...,un)F(vl,...,vn))

We need to compute:

d
a—ulF YF(u, ..., un)F(v1,...,00))
d

8vF (F(u1,...,un)F(m,---:Un))

]

at (uy, ..., uy,01,...,05) = (F71(e),F~(e)). When computing the partial
derivative by u;, we can first put (vy,...,v,) = F~!(e) before differentiation.

This gives:
J -1
JF (F<u1/ /un)F(vlz /Un))
! (F1(e),F~1(e))
0
— aF_l(F(ul, ,un) e)
! Fi(o
d
- —(ull /un>
o F1(0)
=(0,..., 1 ,...,0)

Hence, (1) (c,e) (i O> _ o _ 9 . Similarly:

ou;’ ou; ow;
d
—F " (F(ug,...,un)F(o1,...,00) =(0,...,.1 ,...,0)
o ) (F1(e)F1(e)) Y
9\ ou o
and so (pt*)(e,e) (0, a_vz> = 5. = 3w,

Given any (X,Y) € T(,,)(G x G), express them in local coordinates:

vy 9 j 9
X—;Xaui and Y = ZYav]

Then:
; d
(1) (6Y) = (1) E X 5 T )

:ZXiaz), +ZYJ‘% =X+Y
i P

]
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ii. Show that y is a submersion at (e, e).

Solution: From (a)(i), the matrix representation of y. at (e, e) is given by
[In In], which has full rank. Therefore, (i.) () is surjective and so y is a
submersion at (e, e).

(b) Show that the tangent map of v at e is given by:
(1), (X) = —X.
[Hint for part (a): when taking partial derivative % at (u,v) = (up,vp), it is OK to

substitute v = vy first, and then differentiate f(u, vy) by u. It is possible to prove (b) using
the result from (a)i and the manifold chain rule in an appropriate way.]

Solution: Parametrize the domain G by F(uy,...,u,) near e, and parametrize the
target G using the same parametrization F(wy, ..., w,) near v(e) = e. We use different
coordinate labels to avoid confusion.

Denote:
(wy, ..., wy) =F YovoF(uy,..., u,),

then we need to find the Jacobian matrix at F~1(e):

A(wy, ..., wy)
a(ug, ..., uy) "

Observe that:
Fwi, ..., wp)F(ur, ..., up) = = F Y F(wy,...,w)F(ur, ..., u)) =F ().

Regarding w;’s are functions of u;’s, we can apply the chain rule to differentiate both
sides by u;:

d

aul F- (F(wlr“-/wn)F(ulz--~/un)) = (0,,0)

8]—' awk oF
dwy du; aul

Z

Similar to (a)(i), a]::(0,... 1 ...,O)Zekanda—f:(o,... 1 ,...,0)=¢ at

’\/’ aul, ’\/
1
the point (F~1(e), F~1(e)). Combmmg with above, we get:
d 1
( )+(0,...,\1/...,0)_(0,...,0),
1
. . . a7/0] -1
which implies e —0;j. Therefore, we have at F~" (e):
i
D(F'ovoF) = —I,
or equivalently, (vi), = —id.
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Alternatively, one can show the same result by defining v xid : G — G x G by
(v xid)(g) = (v(g),8) and then considering the composition:

po(vxid)(g) =po(v(g)g) =vg)g=e
Since it holds for any g € G, the composition y o (v x id) is a constant map.

By the (manifold) chain rule, we have for any X € T,G:
(po(vxid)) (X)=0 = p.o(vxid).,(X)=0.

It can be shown (detail omitted) that (v x id).(X) = (v«(X), X). From (a), we then
have at e:
0 = pro (v xid)u(X) = (v (X), X) = vu(X) + X,

which implies v, (X) = —X ate.
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