
MATH 4033 • Spring 2018 • Calculus on Manifolds
Problem Set #2 • Abstract Manifolds • Due Date: 11/03/2018, 11:59PM

Instructions: “Outsource” all topological issues to MATH 4225. Make fair use of the word “similarly”
to reduce your workload.

1. Suppose Σ is a n-dimensional topological manifold in Rn+1 (where n ≥ 2) equipped with
a family of local parametrizations {Fα : Uα → Σ} covering the whole Σ and satisfying the
following conditions:

1. Each Fα is smooth as a map from Uα to Rn+1

2. Each Fα is a homeomorphism onto its image Fα(Uα).

3. Regarding (x1, . . . , xn+1) = Fα(u1, . . . , un), the Jacobian matrix

∂(x1, . . . , xn+1)

∂(u1, . . . , un)

at every (u1, . . . , un) ∈ Uα has a trivial null-space.

(a) Show that Σ is an n-dimensional smooth manifold.

Solution: The three conditions are basically higher dimensional analogue of reg-
ular surfaces in R3. The crucial part is to show the transition map F−1

β ◦ Fα be-
tween any pair of overlapping parametrizations is smooth. We mimic what was
done in the regular surface case, namely making use of the non-zero component
of the normal vector to apply the implicit function theorem.

First note that columns of the Jacobian matrix ∂(x1,...,xn+1)
∂(u1,...,un)

are vectors { ∂F
∂u1

, . . . , ∂F
∂un

}.
Condition (3) shows these vectors are linearly independent, hence they span an
n-dimensional subspace in Rn+1. Take any non-zero vector N orthogonal to all of
∂F
∂ui

’s. Then, the n + 1 vectors { ∂F
∂u1

, . . . , ∂F
∂un

,N} are linearly independent. Then the
determinant of the following (n + 1)× (n + 1) matrix:

det


∂F

∂u1
· · · ∂F

∂un
N


∕= 0

Express N = (y1, . . . , yn+1) ∈ Rn+1, then by co-factor expansion we have:

n+1

∑
i=1

(−1)iyi det
∂(x1, · · · , xi−1, xi+1, · · · , xn+1)

∂(u1, · · · , un)
∕= 0.

Therefore, at least one of the determinants

det
∂(x1, · · · , xi−1, xi+1, · · · , xn+1)

∂(u1, · · · , un)
∕= 0

Consider πi : Rn+1 → Rn be the projection map

(x1, · · · , xn+1) → (x1, · · · , xi−1, xi+1, · · · , xn+1).

Then, the composition πi ◦ F : Rn → Rn is locally invertible. The rest of the proof
then goes through as in the regular surface case.
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(b) Show further that Σ is a submanifold of Rn+1.

Solution: The key observation is that

[ι∗] =
∂(x1, . . . , xn+1)

∂(u1, . . . , un)

which has trivial null-space. It is equivalent to saying that ι∗ is injective, and so ι
is an immersion.

2. The complex projective plane CP1 is defined as follows:

CP1 := {[z0 : z1] : (z0, z1) ∕= (0, 0)}.

Here z0, z1 are complex numbers, and we declare [z0 : z1] = [w0 : w1] if and only if
(z0, z1) = λ(w0, w1) for some λ ∈ C\{0}.

(a) Show that CP1 is a smooth manifold of (real) dimension 2.

Solution: We define parameterizations

F0 : R2 → {[z0 : z1] : z0 ∕= 0} = O0

(u1, u2) → [1 : u1 + iu2]

F1 : R2 → {[z0 : z1] : z1 ∕= 0} = O1

(v1, v2) → [v1 + iv2 : 1].

Then O0
O1 = CP1.

Next, we check the smoothness of transition maps. On R2\{(0, 0)}

F1
−1 ◦ F0(u1, u2) = F1

−1 ([1 : u1 + iu2])

= F1
−1


[

1
u1 + iu2

: 1]


= F1
−1


[

u1

u2
1 + u2

2
+ i

−u2

u2
1 + u2

2
: 1]



=


u1

u2
1 + u2

2
,

−u2

u2
1 + u2

2



which is smooth. Similarly, F0−1 ◦ F1 is also smooth. Hence, CP1 is a smooth
manifold of (real) dimension 2.

(b) Show that CP1 and the sphere S2 are diffeomorphic. [Hint: consider stereographic
projections]

Solution: Define Φ : CP1 → S2 such that




Φ ([1 : u1 + iu2]) =


2u1

u2
1 + u2

2 + 1
,

2u2

u2
1 + u2

2 + 1
,

u2
1 + u2

2 − 1
u2

1 + u2
2 + 1



Φ ([0 : 1]) = (0, 0, 1).
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Also, we define Ψ : S2 → CP1 such that

Ψ (x1, x2, x3) =







1,

x1 + ix2

1 − x3


if x3 ∕= 1,

[0, 1] if x3 = 1
.

Then,

Φ ◦ Ψ (x1, x2, x3)

=





Φ


1 :
x1 + ix2

1 − x3


if x3 ∕= 1,

Φ ([0 : 1]) if x3 = 1

=







2x1(1 − x3)

x2
1 + x2

2 + (1 − x3)2
,

2x2(1 − x3)

x2
1 + x2

2 + (1 − x3)2
,

x2
1 + x2

2 − 1 − x2
3 + 2x3

x2
1 + x2

2 + 1 + x2
3 − 2x3


if x3 ∕= 1,

(0, 0, 1) if x3 = 1

= (x1, x2, x3)

where we have used the fact x2
1 + x2

2 + x2
3 = 1 to simplify the expressions, and


Ψ ◦ Φ ([1 : u1 + iu2])

Ψ ◦ Φ ([0 : 1]) = (0, 0, 1)

=





Ψ


2u1

u2
1 + u2

2 + 1
,

2u2

u2
1 + u2

2 + 1
,

u2
1 + u2

2 − 1
u2

1 + u2
2 + 1



Ψ(0, 0, 1)

=


[1 : u1 + iu2]

[0 : 1]
.

Hence, Ψ = Φ−1.
Suppose

G0(u1, u2) =


2u1

u2
1 + u2

2 + 1
,

2u2

u2
1 + u2

2 + 1
,

u2
1 + u2

2 − 1
u2

1 + u2
2 + 1


: R2 → S2\{(0, 0, 1)},

G1(v1, v2) =


2v1

v2
1 + v2

2 + 1
,

2v2

v2
1 + v2

2 + 1
,

1 − v2
1 − v2

2

v2
1 + v2

2 + 1


: R2 → S2\{(0, 0,−1)}

are local parameterizations of S2.
On {Φ ◦ F0(R2)}{G0(R2)}, we have

G0
−1 ◦ Φ ◦ F0(u1, u2) = G0

−1 ◦ Φ([1 : u1 + iu2])

= G0
−1


2u1

u2
1 + u2

2 + 1
,

2u2

u2
1 + u2

2 + 1
,

u2
1 + u2

2 − 1
u2

1 + u2
2 + 1



= (u1, u2).

which means G0
−1 ◦ Φ ◦ F0 is identity map. It is easy to check for other parame-

terizations in a similar way. So, Φ is smooth.
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On {Ψ ◦ G0(R2)}{F0(R2)}, we have

F0
−1 ◦ Ψ ◦ G0(u1, u2) = F0

−1 ◦ Ψ


2u1

u2
1 + u2

2 + 1
,

2u2

u2
1 + u2

2 + 1
,

u2
1 + u2

2 − 1
u2

1 + u2
2 + 1



= F0
−1[1 : u1 + iu2]

= (u1, u2).

which means F0
−1 ◦ Ψ ◦ G0 is identity map. It is also easy to check for other

parameterizations in a similar way. So, Ψ is smooth.
Therefore, CP1 and the sphere S2 are diffeomorphic.

3. Consider the following equivalence relation ∼ defined on R2:

(x, y) ∼ (x′, y′) ⇐⇒ (x′, y′) =

(−1)nx + m, y + n


for some integers m and n.

(a) Sketch an edge-identified square to represent the quotient space R2/∼.

(b) Consider the two parametrizations of R2/∼:

G1 : (0, 1)× (0, 1) → R2/∼ G2 : (0, 1)× (0.5, 1.5) → R2/∼
(x, y) → [(x, y)] (x, y) → [(x, y)]

Find the transition map G−1
2 ◦ G1.

Solution: The domain of G−1
2 ◦ G1 is (0, 1)× {(0, 0.5)


(0.5, 1)}. From the equiv-

alence relation, [(x, y)] = [(1 − x, y + 1)]. Hence, for any (x, y) in the domain, we
have

G−1
2 ◦ G1(x, y) =


G−1

2 ([(1 − x, y + 1)]) if (x, y) ∈ (0, 1)× (0, 0.5)
G−1

2 ([(x, y)]) if (x, y) ∈ (0, 1)× (0.5, 1)

=


(1 − x, y + 1) if (x, y) ∈ (0, 1)× (0, 0.5)
(x, y) if (x, y) ∈ (0, 1)× (0.5, 1)

(c) Write down a diffeomorphism between R2/∼ and the Klein bottle K in R4 described
in Example 2.16.

Solution: The diffeomorphism Φ : R2/∼ → K is

Φ([x, y]) =





(cos 2πx + 2) cos 2πy
(cos 2πx + 2) sin 2πy

sin 2πx cos πy
sin 2πx sin πy



 .

One can check that Φ is well-defined, bijective, and is a diffeomorphism. Detail
is omitted here.

4. Consider the following subset of R2 × RP1

M =


(x1, x2), [y1 : y2]


∈ R2 × RP1

 x1y2 = y1x2
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(a) Show that M is a smooth 2-manifold by considering the following parametrizations:

F(u1, u2) =


(u1u2, u2), [u1 : 1]



G(v1, v2) =


(v1, v1v2), [1 : v2]



Solution:

M =


(x1, x2), [y1 : y2]


∈ R2 × RP1

 x1y2 = y1x2, y1 ∕= 0



(x1, x2), [y1 : y2]


∈ R2 × RP1

 x1y2 = y1x2, y2 ∕= 0


=


(x1, x1

x2

x1
), [1 :

x2

x1
]


∈ R2 × RP1

 x1y2 = y1x2, y1 ∕= 0



(x2

x1

x2
, x2), [

x1

x2
: 1]


∈ R2 × RP1

 x1y2 = y1x2, y2 ∕= 0


.

Hence, F(R2) and G(R2) is a covering of M.
The domain of the transition map G−1 ◦ F is R2\{u1 = 0}.

G−1 ◦ F(u1, u2) = G−1

(u1u2, u2), [u1 : 1]



= G−1

(u1u2, u1u2

1
u1

), [1 :
1
u1

]



=


u1u2,

1
u1


,

which is smooth. The domain of the transition map F−1 ◦ G is R2\{v2 = 0}.

F−1 ◦ G(v1, v2) = F−1

(v1, v1v2), [1 : v2]



= F−1

(v1v2

1
v2

, v1v2), [
1
v2

: 1]


=


1
v2

, v1v2


,

which is smooth.
Thus, M is a smooth 2-manifold.

(b) Consider the two projection maps π1 : M → R2 and π2 : M → RP1 defined by:

π1


(x1, x2), [y1 : y2]


= (x1, x2)

π2


(x1, x2), [y1 : y2]


= [y1 : y2]

i. Show that π−1
1 (p) is either a point, or diffeomorphic to RP1.
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Solution: Case 1: When x1 ∕= 0 and x2 ∕= 0.
Then y1 ∕= 0 and y2 ∕= 0. We have [y1 : y2] = [x1 : x2]. Hence,

π−1
1 (x1, x2) =


(x1, x2), [x1 : x2]



is a point.

Case 2: When x1 = 0 and x2 ∕= 0.
Then y1 = 0 and we have [y1 : y2] = [0 : 1]. Hence,

π−1
1 (x1, x2) =


(0, x2), [0 : 1]



is a point.
Case 3: When x1 ∕= 0 and x2 = 0.
Then y2 = 0 and we have [y1 : y2] = [1 : 0]. Hence,

π−1
1 (x1, x2) =


(x1, 0), [1 : 0]



is a point.
Case 4: When x1 = 0 and x2 = 0.
Then (y1, y2) can be any point in R2 but (0, 0). Hence,

π−1
1 (x1, x2) =


(0, 0), [y1 : y2]



Which is diffeomorphic to RP1.

ii. Show that π2 is a submersion.

Solution: Let

H1(t) = [1 : t] : R → {[x : y]
x ∕= 0}

H2(t) = [t : 1] : R → {[x : y]
y ∕= 0}

be a local parameterizations of RP1.
On R2, H2

−1 ◦ π2 ◦ F(u1, u2) = u1,

[π2∗]p =


∂

∂u1


H2

−1 ◦ π2 ◦ F
 

F−1(p)

∂

∂u2


H2

−1 ◦ π2 ◦ F
 

F−1(p)



= [ 1 0 ]

∕= 0,

Hence, it is surjective.
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On R2, H1
−1 ◦ π2 ◦ G(v1, v2) = v2,

[π2∗]p =


∂

∂v1


H1

−1 ◦ π2 ◦ G
 

G−1(p)

∂

∂v2


H1

−1 ◦ π2 ◦ G
 

G−1(p)



= [ 0 1 ]

∕= 0,

Hence, it is surjective.
Thus, π2 is a submersion.

5. The tangent bundle TM of a smooth n-manifold M is the disjoint union of all tangent
spaces of M, i.e.

TM :=


p∈M

{p}× Tp M = {(p, Vp) : p ∈ M and Vp ∈ Tp M}.

(a) Show that TM is a smooth 2n-manifold. [Again, skip the topological parts, but show
detail work of the differentiable parts.]

Solution: Given any local parametrization F(u1, . . . , un) : U → O of M, we de-
fine an induced local parametrization F : U × Rn → TM of the tangent bundle
TM by:

F(u1, . . . , un, a1, . . . , an) :=

F(u1, . . . , un), a1 ∂

∂u1
+ · · ·+ an ∂

∂un


∈ TM.

Suppose G(v1, . . . , vn) is another local parametrization of M, and its induced
parametrization is G given by:

G(v1, . . . , vn, b1, . . . , bn) =


G(v1, . . . , vn), b1 ∂

∂v1
+ · · ·+ bn ∂

∂vn


.

Since ∂
∂ui

= ∑k
∂vk
∂ui

∂
∂vk

by regarding (v1, . . . , vn) = G−1 ◦ F(u1, . . . , un), we can find

the transition map between F and G:

G−1 ◦ F(u1, . . . , un, a1, . . . , an)

= G−1

F(u1, . . . , un), a1 ∂

∂u1
+ · · ·+ an ∂

∂un



= G−1


F(u1, . . . , un), a1 ∑

k

∂vk

∂u1

∂

∂vk
+ · · ·+ an ∑

k

∂vk

∂un

∂

∂vk



= G−1


F(u1, . . . , un), ∑

k



∑
j

aj ∂vk

∂uj


∂

∂vk



=


G−1 ◦ F(u1, . . . , un), ∑

j
aj ∂v1

∂uj
, . . . , ∑

j
aj ∂vn

∂uj



Since G−1 ◦ F is smooth, and hence each vk is a smooth function of (u1, . . . , un),
we conclude that G−1 ◦ F is smooth as well. This shows the transition map G−1 ◦ F
is smooth.
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The induced atlas {Fα : Uα × Rn → TM} cover the whole TM, as for each
(p, Vp) ∈ TM, we can first cover p ∈ M by a local parametrization Fα : Uα → M,
then its induced local parametrization F covers all pairs (p, V) ∈ {p}× Tp M.

(b) Show that the map π : TM → M defined by π(p, Vp) := p is a submersion.

Solution: We need to find the tangent map π∗ and show it is surjective. Suppose
F(u1, . . . , un) is a local parametrization of M, then:

F−1 ◦ π ◦ F(u1, . . . , un, a1, . . . , an)

= F−1 ◦ π


F(u1, . . . , un), a1 ∂

∂u1
+ · · ·+ an ∂

∂un



= F−1

F(u1, . . . , un)



= (u1, . . . , un)

Hence, the Jacobian of F−1 ◦ π ◦ F is given by:

[π∗] = D(F−1 ◦ π ◦ F) = ∂(u1, . . . , un)

∂(u1, . . . , un, a1, . . . , an)
= [In 0],

which has full rank. Hence (π∗)p : T(p,V)(TM) → Tp M is surjective for any
(p, V) ∈ TM.

(c) Define the subset Σ0 := {(p, 0p) ∈ TM : p ∈ M} where 0p is the zero vector in Tp M.
This set Σ0 is called the zero section of the tangent bundle. Show that Σ0 is a smooth
n-manifold diffeomorphic to M, and that it is a submanifold of TM.

Solution: Given any local parametrization F(u1, . . . , un) of M, we define an in-
duced local parametrization F(u1, . . . , un) of Σ0 by:

F(u1, . . . , un) =


F(u1, . . . , un), 0

∂

∂u1
+ · · ·+ 0

∂

∂un


.

Clearly, given another local parametrization G(v1, . . . , vn), the transition of the
induced parametrizations of Σ0 is given by:

G
−1 ◦ F(u1, . . . , un) = G−1 ◦ F(u1, . . . , un),

which is smooth. It is clear that these induced parametrizations cover the whole
Σ0. This shows Σ0 is a smooth manifold.
To show Σ0 is diffeomorphic to M, we define Φ : M → Σ0 by:

Φ(p) := (p, 0p).

Then clearly F
−1 ◦ Φ ◦ F(u1, . . . , un) = (u1, . . . , un), which is smooth. The map

Φ is bijective with Φ−1(p, 0p) = p. The inverse Φ−1 is smooth too as F ◦ Φ−1 ◦
F(u1, . . . , un) = (u1, . . . , un). This concludes M and Σ0 are diffeomorphic.
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To show Σ0 is a submanifold of TM, we need to show that ι : Σ0 → TM is an
immersion.

F−1 ◦ ι ◦ F(u1, . . . , un)

= F−1 ◦ ι


F(u1, . . . , un), 0

∂

∂u1
+ · · ·+ 0

∂

∂un



= F−1

F(u1, . . . , un), 0

∂

∂u1
+ · · ·+ 0

∂

∂un



= (u1, . . . , un, 0, . . . , 0).

Hence, the tangent map ι∗ is presented by the matrix:

[ι∗] =


In
0



whose columns are linearly independent. Therefore, ι∗ is injective.

(d) Now suppose M is just a Ck-manifold (where k ≥ 2), then TM is a Cwhat?-manifold?

Solution: According to (a), the transition maps of TM are given by:

G−1 ◦ F(u1, . . . , un, a1, . . . , an) =


G−1 ◦ F(u1, . . . , un), ∑

j
aj ∂v1

∂uj
, . . . , ∑

j
aj ∂vn

∂uj


.

If M is just a Ck-manifold, then (v1, . . . , vn) = G−1 ◦ F(u1, . . . , un) is Ck, and hence
each ∂vj

∂ui
is Ck−1. Hence TM is a Ck−1-manifold.

6. A Lie group G is a smooth manifold such that multiplication and inverse maps

µ : G × G → G ν : G → G

(g, h) → gh g → g−1

are both smooth (C∞) maps. As an example, GL(n, R) is a Lie group since it is an open
subset of Mn×n(R) ∼= Rn2

, hence it can be globally parametrized using coordinates of
Rn2

. The multiplication map is given by products and sums of coordinates in Rn2
, hence

it is smooth. The inverse map is smooth too by the Cramer’s rule A−1 = 1
det(A)

adj(A) and
that det(A) ∕= 0 for any A ∈ GL(n, R).

(a) Recall that T(e,e)(G × G) can be identified with TeG ⊕ TeG = {(X, Y) : X, Y ∈ TeG}.
i. Show that the tangent map of µ at (e, e) is given by:

(µ∗)(e,e) (X, Y) = X + Y.

Solution: Let F(u1, . . . , un) be a local parametrization of G covering e, then

(F× F)(u1, . . . , un, v1, . . . , vn) =

F(u1, . . . , un),F(v1, . . . , vn)
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parametrizes G × G near (e, e). Parametrize G near µ(e, e) = e by the same
parametrization F(w1, . . . , wn), with different coordinates label to avoid con-
fusion.
In order to compute µ∗, we first need to find F−1 ◦ µ ◦ (F× F):

F−1 ◦ µ ◦ (F× F)(u1, . . . , un, v1, . . . , vn)

= F−1 ◦ µ

F(u1, . . . , un), F(v1, . . . , vn)



= F−1F(u1, . . . , un)F(v1, . . . , vn)


We need to compute:

∂

∂ui
F−1F(u1, . . . , un)F(v1, . . . , vn)



∂

∂vj
F−1F(u1, . . . , un)F(v1, . . . , vn)



at (u1, . . . , un, v1, . . . , vn) = (F−1(e),F−1(e)). When computing the partial
derivative by ui, we can first put (v1, . . . , vn) = F−1(e) before differentiation.
This gives:

∂

∂ui
F−1F(u1, . . . , un)F(v1, . . . , vn)


(F−1(e),F−1(e))

=
∂

∂ui
F−1(F(u1, . . . , un) e)


F−1(e)

=
∂

∂ui
(u1, . . . , un)


F−1(e)

= (0, . . . , 1
i

, . . . , 0)

Hence, (µ∗)(e,e)


∂

∂ui
, 0


=

∂µ

∂ui
=

∂

∂wi
. Similarly:

∂

∂vi
F−1F(u1, . . . , un)F(v1, . . . , vn)


(F−1(e),F−1(e))

= (0, . . . , 1
i

, . . . , 0)

and so (µ∗)(e,e)


0,

∂

∂vi


=

∂µ

∂vi
=

∂

∂wi
.

Given any (X, Y) ∈ T(e,e)(G × G), express them in local coordinates:

X = ∑
i

Xi ∂

∂ui
and Y = ∑

j
Y j ∂

∂vj
.

Then:

(µ∗)(e,e)(X, Y) = (µ∗)(e,e)


∑

i
Xi ∂

∂ui
, ∑

j
Y j ∂

∂vj



= ∑
i

Xi ∂

∂wi
+ ∑

j
Y j ∂

∂wj
= X + Y
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ii. Show that µ is a submersion at (e, e).

Solution: From (a)(i), the matrix representation of µ∗ at (e, e) is given by
[In In], which has full rank. Therefore, (µ∗)(e,e) is surjective and so µ is a
submersion at (e, e).

(b) Show that the tangent map of ν at e is given by:

(ν∗)e (X) = −X.

[Hint for part (a): when taking partial derivative ∂ f
∂u at (u, v) = (u0, v0), it is OK to

substitute v = v0 first, and then differentiate f (u, v0) by u. It is possible to prove (b) using
the result from (a)i and the manifold chain rule in an appropriate way.]

Solution: Parametrize the domain G by F(u1, . . . , un) near e, and parametrize the
target G using the same parametrization F(w1, . . . , wn) near ν(e) = e. We use different
coordinate labels to avoid confusion.

Denote:
(w1, . . . , wn) = F−1 ◦ ν ◦ F(u1, . . . , un),

then we need to find the Jacobian matrix at F−1(e):

∂(w1, . . . , wn)

∂(u1, . . . , un)
.

Observe that:

F(w1, . . . , wn)F(u1, . . . , un) = e =⇒ F−1F(w1, . . . , wn)F(u1, . . . , un)

= F−1(e).

Regarding wj’s are functions of ui’s, we can apply the chain rule to differentiate both
sides by ui:

∂

∂ui
F−1F(w1, . . . , wn)F(u1, . . . , un)


  

=:F

= (0, . . . , 0)

∑
k

∂F
∂wk

∂wk

∂ui
+

∂F
∂ui

= (0, . . . , 0).

Similar to (a)(i),
∂F
∂wk

= (0, . . . , 1
k

, . . . , 0) = ek and
∂F
∂ui

= (0, . . . , 1
i

, . . . , 0) = ei at

the point (F−1(e),F−1(e)). Combining with above, we get:


∂w1

∂ui
, . . . ,

∂wn

∂ui


+ (0, . . . , 1

i

, . . . , 0) = (0, . . . , 0),

which implies
∂wj

∂ui
= −δij. Therefore, we have at F−1(e):

D(F−1 ◦ ν ◦ F) = −In

or equivalently, (ν∗)e = −id.
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Alternatively, one can show the same result by defining ν × id : G → G × G by
(ν × id)(g) = (ν(g), g) and then considering the composition:

µ ◦ (ν × id)(g) = µ ◦ (ν(g), g) = ν(g) g = e.

Since it holds for any g ∈ G, the composition µ ◦ (ν × id) is a constant map.

By the (manifold) chain rule, we have for any X ∈ TeG:

µ ◦ (ν × id)


∗(X) = 0 =⇒ µ∗ ◦ (ν × id)∗(X) = 0.

It can be shown (detail omitted) that (ν × id)∗(X) = (ν∗(X), X). From (a), we then
have at e:

0 = µ∗ ◦ (ν × id)∗(X) = µ∗(ν∗(X), X) = ν∗(X) + X,

which implies ν∗(X) = −X at e.
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