MATH 4033 • Spring 2018 • Calculus on Manifolds Problem Set \#2 • Abstract Manifolds • Due Date: 11/03/2018, 11:59PM

Instructions: "Outsource" all topological issues to MATH 4225. Make fair use of the word "similarly" to reduce your workload.

1. Suppose Σ is a n-dimensional topological manifold in \mathbb{R}^{n+1} (where $n \geq 2$) equipped with a family of local parametrizations $\left\{\mathrm{F}_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \Sigma\right\}$ covering the whole Σ and satisfying the following conditions:
2. Each F_{α} is smooth as a map from \mathcal{U}_{α} to \mathbb{R}^{n+1}
3. Each F_{α} is a homeomorphism onto its image $F_{\alpha}\left(\mathcal{U}_{\alpha}\right)$.
4. Regarding $\left(x_{1}, \ldots, x_{n+1}\right)=\mathrm{F}_{\alpha}\left(u_{1}, \ldots, u_{n}\right)$, the Jacobian matrix

$$
\frac{\partial\left(x_{1}, \ldots, x_{n+1}\right)}{\partial\left(u_{1}, \ldots, u_{n}\right)}
$$

at every $\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{U}_{\alpha}$ has a trivial null-space.
(a) Show that Σ is an n-dimensional smooth manifold.

Solution: The three conditions are basically higher dimensional analogue of regular surfaces in \mathbb{R}^{3}. The crucial part is to show the transition map $F_{\beta}^{-1} \circ F_{\alpha}$ between any pair of overlapping parametrizations is smooth. We mimic what was done in the regular surface case, namely making use of the non-zero component of the normal vector to apply the implicit function theorem.
First note that columns of the Jacobian matrix $\frac{\partial\left(x_{1}, \ldots, x_{n+1}\right)}{\partial\left(u_{1}, \ldots, u_{n}\right)}$ are vectors $\left\{\frac{\partial F}{\partial u_{1}}, \ldots, \frac{\partial F}{\partial u_{n}}\right\}$. Condition (3) shows these vectors are linearly independent, hence they span an n-dimensional subspace in \mathbb{R}^{n+1}. Take any non-zero vector N orthogonal to all of $\frac{\partial \mathrm{F}}{\partial u_{i}}$ s. Then, the $n+1$ vectors $\left\{\frac{\partial \mathrm{F}}{\partial u_{1}}, \ldots, \frac{\partial \mathrm{~F}}{\partial u_{n}}, \mathrm{~N}\right\}$ are linearly independent. Then the determinant of the following $(n+1) \times(n+1)$ matrix:

$$
\operatorname{det}\left[\frac{\partial F}{\partial u_{1}} \cdots \frac{\partial F}{\partial u_{n}} N\right] \neq 0
$$

Express $\mathbf{N}=\left(y_{1}, \ldots, y_{n+1}\right) \in \mathbb{R}^{n+1}$, then by co-factor expansion we have:

$$
\sum_{i=1}^{n+1}(-1)^{i} y_{i} \operatorname{det} \frac{\partial\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}\right)}{\partial\left(u_{1}, \cdots, u_{n}\right)} \neq 0 .
$$

Therefore, at least one of the determinants

$$
\operatorname{det} \frac{\partial\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}\right)}{\partial\left(u_{1}, \cdots, u_{n}\right)} \neq 0
$$

Consider $\pi_{i}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map

$$
\left(x_{1}, \cdots, x_{n+1}\right) \mapsto\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}\right) .
$$

Then, the composition $\pi_{i} \circ \mathrm{~F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is locally invertible. The rest of the proof then goes through as in the regular surface case.
(b) Show further that Σ is a submanifold of \mathbb{R}^{n+1}.

Solution: The key observation is that

$$
\left[\iota_{*}\right]=\frac{\partial\left(x_{1}, \ldots, x_{n+1}\right)}{\partial\left(u_{1}, \ldots, u_{n}\right)}
$$

which has trivial null-space. It is equivalent to saying that l_{*} is injective, and so t is an immersion.
2. The complex projective plane CP^{1} is defined as follows:

$$
\mathbb{C P}^{1}:=\left\{\left[z_{0}: z_{1}\right]:\left(z_{0}, z_{1}\right) \neq(0,0)\right\} .
$$

Here z_{0}, z_{1} are complex numbers, and we declare $\left[z_{0}: z_{1}\right]=\left[w_{0}: w_{1}\right]$ if and only if $\left(z_{0}, z_{1}\right)=\lambda\left(w_{0}, w_{1}\right)$ for some $\lambda \in \mathbb{C} \backslash\{0\}$.
(a) Show that $\mathbb{C P}^{1}$ is a smooth manifold of (real) dimension 2.

Solution: We define parameterizations

$$
\begin{aligned}
\mathrm{F}_{0}: \mathbb{R}^{2} & \rightarrow\left\{\left[z_{0}: z_{1}\right]: z_{0} \neq 0\right\}=\mathcal{O}_{0} \\
\left(u_{1}, u_{2}\right) & \mapsto\left[1: u_{1}+i u_{2}\right] \\
\mathrm{F}_{1}: \quad \mathbb{R}^{2} & \rightarrow\left\{\left[z_{0}: z_{1}\right]: z_{1} \neq 0\right\}=\mathcal{O}_{1} \\
\left(v_{1}, v_{2}\right) & \mapsto\left[v_{1}+i v_{2}: 1\right] .
\end{aligned}
$$

Then $\mathcal{O}_{0} \cup \mathcal{O}_{1}=\mathbb{C P} \mathbb{P}^{1}$.
Next, we check the smoothness of transition maps. On $\mathbb{R}^{2} \backslash\{(0,0)\}$

$$
\begin{aligned}
\mathrm{F}_{1}^{-1} \circ \mathrm{~F}_{0}\left(u_{1}, u_{2}\right) & =\mathrm{F}_{1}^{-1}\left(\left[1: u_{1}+i u_{2}\right]\right) \\
& =\mathrm{F}_{1}^{-1}\left(\left[\frac{1}{u_{1}+i u_{2}}: 1\right]\right) \\
& =\mathrm{F}_{1}^{-1}\left(\left[\frac{u_{1}}{u_{1}^{2}+u_{2}^{2}}+i \frac{-u_{2}}{u_{1}^{2}+u_{2}^{2}}: 1\right]\right) \\
& =\left(\frac{u_{1}}{u_{1}^{2}+u_{2}^{2}}, \frac{-u_{2}}{u_{1}^{2}+u_{2}^{2}}\right)
\end{aligned}
$$

which is smooth. Similarly, $\mathrm{F}_{0}{ }^{-1} \circ \mathrm{~F}_{1}$ is also smooth. Hence, CP^{1} is a smooth manifold of (real) dimension 2.
(b) Show that $\mathbb{C P}^{1}$ and the sphere S^{2} are diffeomorphic. [Hint: consider stereographic projections]

Solution: Define $\Phi: \mathbb{C P}^{1} \rightarrow S^{2}$ such that

$$
\left\{\begin{array}{l}
\Phi\left(\left[1: u_{1}+i u_{2}\right]\right)=\left(\frac{2 u_{1}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{2 u_{2}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{u_{1}^{2}+u_{2}^{2}-1}{u_{1}^{2}+u_{2}^{2}+1}\right) \\
\Phi([0: 1])=(0,0,1) .
\end{array}\right.
$$

Also, we define $\Psi: S^{2} \rightarrow \mathbb{C P}^{1}$ such that

$$
\Psi\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{ll}
{\left[1, \frac{x_{1}+i x_{2}}{1-x_{3}}\right]} & \text { if } x_{3} \neq 1 \\
{[0,1]} & \text { if } x_{3}=1
\end{array} .\right.
$$

Then,

$$
\begin{aligned}
& \Phi \circ \Psi\left(x_{1}, x_{2}, x_{3}\right) \\
= & \begin{cases}\Phi\left(\left[1: \frac{x_{1}+i x_{2}}{1-x_{3}}\right]\right) & \text { if } x_{3} \neq 1, \\
\Phi([0: 1]) & \text { if } x_{3}=1\end{cases} \\
= & \begin{cases}\left(\frac{2 x_{1}\left(1-x_{3}\right)}{x_{1}^{2}+x_{2}^{2}+\left(1-x_{3}\right)^{2}}, \frac{2 x_{2}\left(1-x_{3}\right)}{x_{1}^{2}+x_{2}^{2}+\left(1-x_{3}\right)^{2}}, \frac{x_{1}^{2}+x_{2}^{2}-1-x_{3}^{2}+2 x_{3}}{x_{1}^{2}+x_{2}^{2}+1+x_{3}^{2}-2 x_{3}}\right) & \text { if } x_{3} \neq 1, \\
(0,0,1) & \text { if } x_{3}=1\end{cases} \\
= & \left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

where we have used the fact $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ to simplify the expressions, and

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Psi \circ \Phi\left(\left[1: u_{1}+i u_{2}\right]\right) \\
\Psi \circ \Phi([0: 1])=(0,0,1)
\end{array}\right. \\
= & \left\{\begin{array}{l}
\Psi\left(\frac{2 u_{1}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{2 u_{2}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{u_{1}^{2}+u_{2}^{2}-1}{u_{1}^{2}+u_{2}^{2}+1}\right) \\
\Psi(0,0,1)
\end{array}\right. \\
= & \left\{\begin{array}{l}
{\left[1: u_{1}+i u_{2}\right]} \\
{[0: 1]}
\end{array}\right.
\end{aligned}
$$

Hence, $\Psi=\Phi^{-1}$.
Suppose

$$
\begin{aligned}
& \mathrm{G}_{0}\left(u_{1}, u_{2}\right)=\left(\frac{2 u_{1}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{2 u_{2}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{u_{1}^{2}+u_{2}^{2}-1}{u_{1}^{2}+u_{2}^{2}+1}\right): \mathbb{R}^{2} \rightarrow \mathrm{~S}^{2} \backslash\{(0,0,1)\}, \\
& \mathrm{G}_{1}\left(v_{1}, v_{2}\right)=\left(\frac{2 v_{1}}{v_{1}^{2}+v_{2}^{2}+1}, \frac{2 v_{2}}{v_{1}^{2}+v_{2}^{2}+1}, \frac{1-v_{1}^{2}-v_{2}^{2}}{v_{1}^{2}+v_{2}^{2}+1}\right): \mathbb{R}^{2} \rightarrow \mathrm{~S}^{2} \backslash\{(0,0,-1)\}
\end{aligned}
$$

are local parameterizations of S^{2}.
On $\left\{\Phi \circ \mathrm{F}_{0}\left(\mathbb{R}^{2}\right)\right\} \cap\left\{\mathrm{G}_{0}\left(\mathbb{R}^{2}\right)\right\}$, we have

$$
\begin{aligned}
\mathrm{G}_{0}^{-1} \circ \Phi \circ \mathrm{~F}_{0}\left(u_{1}, u_{2}\right) & =\mathrm{G}_{0}{ }^{-1} \circ \Phi\left(\left[1: u_{1}+i u_{2}\right]\right) \\
& =\mathrm{G}_{0}^{-1}\left(\frac{2 u_{1}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{2 u_{2}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{u_{1}^{2}+u_{2}^{2}-1}{u_{1}^{2}+u_{2}^{2}+1}\right) \\
& =\left(u_{1}, u_{2}\right) .
\end{aligned}
$$

which means $\mathrm{G}_{0}{ }^{-1} \circ \Phi \circ \mathrm{~F}_{0}$ is identity map. It is easy to check for other parameterizations in a similar way. So, Φ is smooth.

On $\left\{\Psi \circ \mathrm{G}_{0}\left(\mathbb{R}^{2}\right)\right\} \cap\left\{\mathrm{F}_{0}\left(\mathbb{R}^{2}\right)\right\}$, we have

$$
\begin{aligned}
\mathrm{F}_{0}{ }^{-1} \circ \Psi \circ \mathrm{G}_{0}\left(u_{1}, u_{2}\right) & =\mathrm{F}_{0}{ }^{-1} \circ \Psi\left(\frac{2 u_{1}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{2 u_{2}}{u_{1}^{2}+u_{2}^{2}+1}, \frac{u_{1}^{2}+u_{2}^{2}-1}{u_{1}^{2}+u_{2}^{2}+1}\right) \\
& =\mathrm{F}_{0}{ }^{-1}\left[1: u_{1}+i u_{2}\right] \\
& =\left(u_{1}, u_{2}\right) .
\end{aligned}
$$

which means $F_{0}{ }^{-1} \circ \Psi \circ G_{0}$ is identity map. It is also easy to check for other parameterizations in a similar way. So, Ψ is smooth.
Therefore, $\mathbb{C P}^{1}$ and the sphere S^{2} are diffeomorphic.
3. Consider the following equivalence relation \sim defined on \mathbb{R}^{2} :

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \Longleftrightarrow \quad\left(x^{\prime}, y^{\prime}\right)=\left((-1)^{n} x+m, y+n\right) \text { for some integers } m \text { and } n
$$

(a) Sketch an edge-identified square to represent the quotient space \mathbb{R}^{2} / \sim.
(b) Consider the two parametrizations of \mathbb{R}^{2} / \sim :

$$
\begin{aligned}
\mathrm{G}_{1}:(0,1) \times(0,1) & \rightarrow \mathbb{R}^{2} / \sim & \mathrm{G}_{2}:(0,1) \times(0.5,1.5) & \rightarrow \mathbb{R}^{2} / \sim \\
(x, y) & \mapsto[(x, y)] & (x, y) & \mapsto[(x, y)]
\end{aligned}
$$

Find the transition map $G_{2}^{-1} \circ G_{1}$.
Solution: The domain of $\mathrm{G}_{2}^{-1} \circ \mathrm{G}_{1}$ is $(0,1) \times\{(0,0.5) \cup(0.5,1)\}$. From the equivalence relation, $[(x, y)]=[(1-x, y+1)]$. Hence, for any (x, y) in the domain, we have

$$
\begin{aligned}
\mathrm{G}_{2}^{-1} \circ \mathrm{G}_{1}(x, y) & = \begin{cases}\mathrm{G}_{2}^{-1}([(1-x, y+1)]) & \text { if }(x, y) \in(0,1) \times(0,0.5) \\
\mathrm{G}_{2}^{-1}([(x, y)]) & \text { if }(x, y) \in(0,1) \times(0.5,1)\end{cases} \\
& = \begin{cases}(1-x, y+1) & \text { if }(x, y) \in(0,1) \times(0,0.5) \\
(x, y) & \text { if }(x, y) \in(0,1) \times(0.5,1)\end{cases}
\end{aligned}
$$

(c) Write down a diffeomorphism between \mathbb{R}^{2} / \sim and the Klein bottle K in \mathbb{R}^{4} described in Example 2.16.

Solution: The diffeomorphism $\Phi: \mathbb{R}^{2} / \sim \rightarrow K$ is

$$
\Phi([x, y])=\left[\begin{array}{c}
(\cos 2 \pi x+2) \cos 2 \pi y \\
(\cos 2 \pi x+2) \sin 2 \pi y \\
\sin 2 \pi x \cos \pi y \\
\sin 2 \pi x \sin \pi y
\end{array}\right] .
$$

One can check that Φ is well-defined, bijective, and is a diffeomorphism. Detail is omitted here.
4. Consider the following subset of $\mathbb{R}^{2} \times \mathbb{R}^{1}$

$$
M=\left\{\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right) \in \mathbb{R}^{2} \times \mathbb{R P}^{1} \mid x_{1} y_{2}=y_{1} x_{2}\right\}
$$

(a) Show that M is a smooth 2-manifold by considering the following parametrizations:

$$
\begin{aligned}
& \mathrm{F}\left(u_{1}, u_{2}\right)=\left(\left(u_{1} u_{2}, u_{2}\right),\left[u_{1}: 1\right]\right) \\
& \mathrm{G}\left(v_{1}, v_{2}\right)=\left(\left(v_{1}, v_{1} v_{2}\right),\left[1: v_{2}\right]\right)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
M= & \left\{\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right) \in \mathbb{R}^{2} \times \mathbb{R P}^{1} \mid x_{1} y_{2}=y_{1} x_{2}, y_{1} \neq 0\right\} \\
& \bigcup\left\{\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right) \in \mathbb{R}^{2} \times \mathbb{R P}^{1} \mid x_{1} y_{2}=y_{1} x_{2}, y_{2} \neq 0\right\} \\
= & \left\{\left.\left(\left(x_{1}, x_{1} \frac{x_{2}}{x_{1}}\right),\left[1: \frac{x_{2}}{x_{1}}\right]\right) \in \mathbb{R}^{2} \times \mathbb{R P}^{1} \right\rvert\, x_{1} y_{2}=y_{1} x_{2}, y_{1} \neq 0\right\} \\
& \bigcup\left\{\left.\left(\left(x_{2} \frac{x_{1}}{x_{2}}, x_{2}\right),\left[\frac{x_{1}}{x_{2}}: 1\right]\right) \in \mathbb{R}^{2} \times \mathbb{R P}^{1} \right\rvert\, x_{1} y_{2}=y_{1} x_{2}, y_{2} \neq 0\right\} .
\end{aligned}
$$

Hence, $F\left(\mathbb{R}^{2}\right)$ and $G\left(\mathbb{R}^{2}\right)$ is a covering of M.
The domain of the transition map $\mathrm{G}^{-1} \circ \mathrm{~F}$ is $\mathbb{R}^{2} \backslash\left\{u_{1}=0\right\}$.

$$
\begin{aligned}
\mathrm{G}^{-1} \circ \mathrm{~F}\left(u_{1}, u_{2}\right) & =\mathrm{G}^{-1}\left(\left(u_{1} u_{2}, u_{2}\right),\left[u_{1}: 1\right]\right) \\
& =\mathrm{G}^{-1}\left(\left(u_{1} u_{2}, u_{1} u_{2} \frac{1}{u_{1}}\right),\left[1: \frac{1}{u_{1}}\right]\right) \\
& =\left(u_{1} u_{2}, \frac{1}{u_{1}}\right),
\end{aligned}
$$

which is smooth. The domain of the transition map $\mathrm{F}^{-1} \circ \mathrm{G}$ is $\mathbb{R}^{2} \backslash\left\{v_{2}=0\right\}$.

$$
\begin{aligned}
\mathrm{F}^{-1} \circ \mathrm{G}\left(v_{1}, v_{2}\right) & =\mathrm{F}^{-1}\left(\left(v_{1}, v_{1} v_{2}\right),\left[1: v_{2}\right]\right) \\
& =\mathrm{F}^{-1}\left(\left(v_{1} v_{2} \frac{1}{v_{2}}, v_{1} v_{2}\right),\left[\frac{1}{v_{2}}: 1\right]\right) \\
& =\left(\frac{1}{v_{2}}, v_{1} v_{2}\right),
\end{aligned}
$$

which is smooth.
Thus, M is a smooth 2-manifold.
(b) Consider the two projection maps $\pi_{1}: M \rightarrow \mathbb{R}^{2}$ and $\pi_{2}: M \rightarrow \mathbb{R P}^{1}$ defined by:

$$
\begin{aligned}
& \pi_{1}\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right)=\left(x_{1}, x_{2}\right) \\
& \pi_{2}\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right)=\left[y_{1}: y_{2}\right]
\end{aligned}
$$

i. Show that $\pi_{1}^{-1}(p)$ is either a point, or diffeomorphic to $\mathbb{R} \mathbb{P}^{1}$.

Solution: Case 1: When $x_{1} \neq 0$ and $x_{2} \neq 0$.
Then $y_{1} \neq 0$ and $y_{2} \neq 0$. We have $\left[y_{1}: y_{2}\right]=\left[x_{1}: x_{2}\right]$. Hence,

$$
\pi_{1}^{-1}\left(x_{1}, x_{2}\right)=\left(\left(x_{1}, x_{2}\right),\left[x_{1}: x_{2}\right]\right)
$$

is a point.
Case 2: When $x_{1}=0$ and $x_{2} \neq 0$.
Then $y_{1}=0$ and we have $\left[y_{1}: y_{2}\right]=[0: 1]$. Hence,

$$
\pi_{1}^{-1}\left(x_{1}, x_{2}\right)=\left(\left(0, x_{2}\right),[0: 1]\right)
$$

is a point.
Case 3: When $x_{1} \neq 0$ and $x_{2}=0$.
Then $y_{2}=0$ and we have $\left[y_{1}: y_{2}\right]=[1: 0]$. Hence,

$$
\pi_{1}^{-1}\left(x_{1}, x_{2}\right)=\left(\left(x_{1}, 0\right),[1: 0]\right)
$$

is a point.
Case 4: When $x_{1}=0$ and $x_{2}=0$.
Then (y_{1}, y_{2}) can be any point in \mathbb{R}^{2} but $(0,0)$. Hence,

$$
\pi_{1}^{-1}\left(x_{1}, x_{2}\right)=\left((0,0),\left[y_{1}: y_{2}\right]\right)
$$

Which is diffeomorphic to $\mathbb{R P}^{1}$.
ii. Show that π_{2} is a submersion.

Solution: Let

$$
\begin{aligned}
& \mathrm{H}_{1}(t)=[1: t]: \mathbb{R} \rightarrow\{[x: y] \mid x \neq 0\} \\
& \mathrm{H}_{2}(t)=[t: 1]: \mathbb{R} \rightarrow\{[x: y] \mid y \neq 0\}
\end{aligned}
$$

be a local parameterizations of $\mathbb{R P}^{1}$.
On $\mathbb{R}^{2}, \mathrm{H}_{2}^{-1} \circ \pi_{2} \circ \mathrm{~F}\left(u_{1}, u_{2}\right)=u_{1}$,

$$
\begin{aligned}
{\left[\pi_{2 *}\right]_{p} } & =\left[\left.\left.\frac{\partial}{\partial u_{1}}\left(\mathrm{H}_{2}^{-1} \circ \pi_{2} \circ \mathrm{~F}\right)\right|_{\mathrm{F}^{-1}(p)} \frac{\partial}{\partial u_{2}}\left(\mathrm{H}_{2}^{-1} \circ \pi_{2} \circ \mathrm{~F}\right)\right|_{\mathrm{F}^{-1}(p)}\right] \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& \neq 0
\end{aligned}
$$

Hence, it is surjective.

On $\mathbb{R}^{2}, \mathrm{H}_{1}{ }^{-1} \circ \pi_{2} \circ \mathrm{G}\left(v_{1}, v_{2}\right)=v_{2}$,

$$
\begin{aligned}
{\left[\pi_{2 *}\right]_{p} } & =\left[\left.\left.\frac{\partial}{\partial v_{1}}\left(\mathrm{H}_{1}^{-1} \circ \pi_{2} \circ \mathrm{G}\right)\right|_{\mathrm{G}^{-1}(p)} \frac{\partial}{\partial v_{2}}\left(\mathrm{H}_{1}^{-1} \circ \pi_{2} \circ \mathrm{G}\right)\right|_{\mathrm{G}^{-1}(p)}\right] \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
& \neq 0
\end{aligned}
$$

Hence, it is surjective.
Thus, π_{2} is a submersion.
5. The tangent bundle $T M$ of a smooth n-manifold M is the disjoint union of all tangent spaces of M, i.e.

$$
T M:=\bigcup_{p \in M}\{p\} \times T_{p} M=\left\{\left(p, V_{p}\right): p \in M \text { and } V_{p} \in T_{p} M\right\}
$$

(a) Show that TM is a smooth $2 n$-manifold. [Again, skip the topological parts, but show detail work of the differentiable parts.]

Solution: Given any local parametrization $\mathrm{F}\left(u_{1}, \ldots, u_{n}\right): \mathcal{U} \rightarrow \mathcal{O}$ of M, we define an induced local parametrization $\widetilde{F}: \mathcal{U} \times \mathbb{R}^{n} \rightarrow T M$ of the tangent bundle TM by:

$$
\widetilde{\mathrm{F}}\left(u_{1}, \ldots, u_{n}, a^{1}, \ldots, a^{n}\right):=\left(\mathrm{F}\left(u_{1}, \ldots, u_{n}\right), a^{1} \frac{\partial}{\partial u_{1}}+\cdots+a^{n} \frac{\partial}{\partial u_{n}}\right) \in T M .
$$

Suppose $\mathrm{G}\left(v_{1}, \ldots, v_{n}\right)$ is another local parametrization of M, and its induced parametrization is $\widetilde{\mathrm{G}}$ given by:

$$
\widetilde{\mathrm{G}}\left(v_{1}, \ldots, v_{n}, b^{1}, \ldots, b^{n}\right)=\left(\mathrm{G}\left(v_{1}, \ldots, v_{n}\right), b^{1} \frac{\partial}{\partial v_{1}}+\cdots+b^{n} \frac{\partial}{\partial v_{n}}\right) .
$$

Since $\frac{\partial}{\partial u_{i}}=\sum_{k} \frac{\partial v_{k}}{\partial u_{i}} \frac{\partial}{\partial v_{k}}$ by regarding $\left(v_{1}, \ldots, v_{n}\right)=\mathrm{G}^{-1} \circ \mathrm{~F}\left(u_{1}, \ldots, u_{n}\right)$, we can find the transition map between \widetilde{F} and \widetilde{G} :

$$
\begin{aligned}
& \widetilde{\mathrm{G}}^{-1} \circ \widetilde{\mathrm{~F}}\left(u_{1}, \ldots, u_{n}, a^{1}, \ldots, a^{n}\right) \\
& =\widetilde{\mathrm{G}}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), a^{1} \frac{\partial}{\partial u_{1}}+\cdots+a^{n} \frac{\partial}{\partial u_{n}}\right) \\
& =\widetilde{\mathrm{G}}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), a^{1} \sum_{k} \frac{\partial v_{k}}{\partial u_{1}} \frac{\partial}{\partial v_{k}}+\cdots+a^{n} \sum_{k} \frac{\partial v_{k}}{\partial u_{n}} \frac{\partial}{\partial v_{k}}\right) \\
& =\widetilde{\mathrm{G}}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), \sum_{k}\left(\sum_{j} a^{j} \frac{\partial v_{k}}{\partial u_{j}}\right) \frac{\partial}{\partial v_{k}}\right) \\
& =\left(\mathrm{G}^{-1} \circ \mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), \sum_{j} a^{j} \frac{\partial v_{1}}{\partial u_{j}}, \ldots, \sum_{j} a^{j} \frac{\partial v_{n}}{\partial u_{j}}\right)
\end{aligned}
$$

Since $\mathrm{G}^{-1} \circ \mathrm{~F}$ is smooth, and hence each v_{k} is a smooth function of $\left(u_{1}, \ldots, u_{n}\right)$, we conclude that $\widetilde{\mathrm{G}}^{-1} \circ \widetilde{\mathrm{~F}}$ is smooth as well. This shows the transition map $\widetilde{\mathrm{G}}^{-1} \circ \widetilde{\mathrm{~F}}$ is smooth.

The induced atlas $\left\{\widetilde{\mathrm{F}}_{\alpha}: \mathcal{U}_{\alpha} \times \mathbb{R}^{n} \rightarrow T M\right\}$ cover the whole $T M$, as for each $\left(p, V_{p}\right) \in T M$, we can first cover $p \in M$ by a local parametrization $\mathrm{F}_{\alpha}: \mathcal{U}_{\alpha} \rightarrow M$, then its induced local parametrization $\widetilde{\mathrm{F}}$ covers all pairs $(p, V) \in\{p\} \times T_{p} M$.
(b) Show that the map $\pi: T M \rightarrow M$ defined by $\pi\left(p, V_{p}\right):=p$ is a submersion.

Solution: We need to find the tangent map π_{*} and show it is surjective. Suppose $\mathrm{F}\left(u_{1}, \ldots, u_{n}\right)$ is a local parametrization of M, then:

$$
\begin{aligned}
& \mathrm{F}^{-1} \circ \pi \circ \widetilde{\mathrm{~F}}\left(u_{1}, \ldots, u_{n}, a^{1}, \ldots, a^{n}\right) \\
& =\mathrm{F}^{-1} \circ \pi\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), a^{1} \frac{\partial}{\partial u_{1}}+\cdots+a^{n} \frac{\partial}{\partial u_{n}}\right) \\
& =\mathrm{F}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right)\right) \\
& =\left(u_{1}, \ldots, u_{n}\right)
\end{aligned}
$$

Hence, the Jacobian of $F^{-1} \circ \pi \circ \widetilde{F}$ is given by:

$$
\left[\pi_{*}\right]=D\left(\mathrm{~F}^{-1} \circ \pi \circ \widetilde{\mathrm{~F}}\right)=\frac{\partial\left(u_{1}, \ldots, u_{n}\right)}{\partial\left(u_{1}, \ldots, u_{n}, a^{1}, \ldots, a^{n}\right)}=\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]
$$

which has full rank. Hence $\left(\pi_{*}\right)_{p}: T_{(p, V)}(T M) \rightarrow T_{p} M$ is surjective for any $(p, V) \in T M$.
(c) Define the subset $\Sigma_{0}:=\left\{\left(p, 0_{p}\right) \in T M: p \in M\right\}$ where 0_{p} is the zero vector in $T_{p} M$. This set Σ_{0} is called the zero section of the tangent bundle. Show that Σ_{0} is a smooth n-manifold diffeomorphic to M, and that it is a submanifold of $T M$.

Solution: Given any local parametrization $\mathrm{F}\left(u_{1}, \ldots, u_{n}\right)$ of M, we define an induced local parametrization $\overline{\mathrm{F}}\left(u_{1}, \ldots, u_{n}\right)$ of Σ_{0} by:

$$
\overline{\mathrm{F}}\left(u_{1}, \ldots, u_{n}\right)=\left(\mathrm{F}\left(u_{1}, \ldots, u_{n}\right), 0 \frac{\partial}{\partial u_{1}}+\cdots+0 \frac{\partial}{\partial u_{n}}\right) .
$$

Clearly, given another local parametrization $G\left(v_{1}, \ldots, v_{n}\right)$, the transition of the induced parametrizations of Σ_{0} is given by:

$$
\overline{\mathrm{G}}^{-1} \circ \overline{\mathrm{~F}}\left(u_{1}, \ldots, u_{n}\right)=\mathrm{G}^{-1} \circ \mathrm{~F}\left(u_{1}, \ldots, u_{n}\right)
$$

which is smooth. It is clear that these induced parametrizations cover the whole Σ_{0}. This shows Σ_{0} is a smooth manifold.
To show Σ_{0} is diffeomorphic to M, we define $\Phi: M \rightarrow \Sigma_{0}$ by:

$$
\Phi(p):=\left(p, 0_{p}\right)
$$

Then clearly $\overline{\mathrm{F}}^{-1} \circ \Phi \circ \mathrm{~F}\left(u_{1}, \ldots, u_{n}\right)=\left(u_{1}, \ldots, u_{n}\right)$, which is smooth. The map Φ is bijective with $\Phi^{-1}\left(p, 0_{p}\right)=p$. The inverse Φ^{-1} is smooth too as $\mathrm{F} \circ \Phi^{-1} \circ$ $\overline{\mathrm{F}}\left(u_{1}, \ldots, u_{n}\right)=\left(u_{1}, \ldots, u_{n}\right)$. This concludes M and Σ_{0} are diffeomorphic.

To show Σ_{0} is a submanifold of $T M$, we need to show that $\iota: \Sigma_{0} \rightarrow T M$ is an immersion.

$$
\begin{aligned}
& \widetilde{\mathrm{F}}^{-1} \circ \iota \overline{\mathrm{~F}}\left(u_{1}, \ldots, u_{n}\right) \\
& =\widetilde{\mathrm{F}}^{-1} \circ \iota\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), 0 \frac{\partial}{\partial u_{1}}+\cdots+0 \frac{\partial}{\partial u_{n}}\right) \\
& =\widetilde{\mathrm{F}}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), 0 \frac{\partial}{\partial u_{1}}+\cdots+0 \frac{\partial}{\partial u_{n}}\right) \\
& =\left(u_{1}, \ldots, u_{n}, 0, \ldots, 0\right) .
\end{aligned}
$$

Hence, the tangent map ι_{*} is presented by the matrix:

$$
\left[\iota_{*}\right]=\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]
$$

whose columns are linearly independent. Therefore, ι_{*} is injective.
(d) Now suppose M is just a C^{k}-manifold (where $k \geq 2$), then $T M$ is a $C^{\text {what? }}$-manifold?

Solution: According to (a), the transition maps of $T M$ are given by:

$$
\widetilde{\mathrm{G}}^{-1} \circ \widetilde{\mathrm{~F}}\left(u_{1}, \ldots, u_{n}, a^{1}, \ldots, a^{n}\right)=\left(\mathrm{G}^{-1} \circ \mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), \sum_{j} a^{j} \frac{\partial v_{1}}{\partial u_{j}}, \ldots, \sum_{j} a^{j} \frac{\partial v_{n}}{\partial u_{j}}\right)
$$

If M is just a C^{k}-manifold, then $\left(v_{1}, \ldots, v_{n}\right)=\mathrm{G}^{-1} \circ \mathrm{~F}\left(u_{1}, \ldots, u_{n}\right)$ is C^{k}, and hence each $\frac{\partial v_{j}}{\partial u_{i}}$ is C^{k-1}. Hence $T M$ is a C^{k-1}-manifold.
6. A Lie group G is a smooth manifold such that multiplication and inverse maps

$$
\begin{array}{rlrl}
\mu: G \times G & \rightarrow G & v: G & \rightarrow G \\
(g, h) & \mapsto g h & g & \mapsto g^{-1}
\end{array}
$$

are both smooth $\left(C^{\infty}\right)$ maps. As an example, $G L(n, \mathbb{R})$ is a Lie group since it is an open subset of $M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$, hence it can be globally parametrized using coordinates of $\mathbb{R}^{n^{2}}$. The multiplication map is given by products and sums of coordinates in $\mathbb{R}^{n^{2}}$, hence it is smooth. The inverse map is smooth too by the Cramer's rule $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(\mathrm{A})$ and that $\operatorname{det}(A) \neq 0$ for any $A \in \mathrm{GL}(n, \mathbb{R})$.
(a) Recall that $T_{(e, e)}(G \times G)$ can be identified with $T_{e} G \oplus T_{e} G=\left\{(X, Y): X, Y \in T_{e} G\right\}$.
i. Show that the tangent map of μ at (e, e) is given by:

$$
\left(\mu_{*}\right)_{(e, e)}(X, Y)=X+Y
$$

Solution: Let $\mathrm{F}\left(u_{1}, \ldots, u_{n}\right)$ be a local parametrization of G covering e, then

$$
(\mathrm{F} \times \mathrm{F})\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)=\left(\mathrm{F}\left(u_{1}, \ldots, u_{n}\right), \mathrm{F}\left(v_{1}, \ldots, v_{n}\right)\right)
$$

parametrizes $G \times G$ near (e, e). Parametrize G near $\mu(e, e)=e$ by the same parametrization $\mathrm{F}\left(w_{1}, \ldots, w_{n}\right)$, with different coordinates label to avoid confusion.
In order to compute μ_{*}, we first need to find $\mathrm{F}^{-1} \circ \mu \circ(\mathrm{~F} \times \mathrm{F})$:

$$
\begin{aligned}
& \mathrm{F}^{-1} \circ \mu \circ(\mathrm{~F} \times \mathrm{F})\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right) \\
& =\mathrm{F}^{-1} \circ \mu\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right), \mathrm{F}\left(v_{1}, \ldots, v_{n}\right)\right) \\
& =\mathrm{F}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right) \mathrm{F}\left(v_{1}, \ldots, v_{n}\right)\right)
\end{aligned}
$$

We need to compute:

$$
\begin{gathered}
\frac{\partial}{\partial u_{i}} \mathrm{~F}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right) \mathrm{F}\left(v_{1}, \ldots, v_{n}\right)\right) \\
\frac{\partial}{\partial v_{j}} \mathrm{~F}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right) \mathrm{F}\left(v_{1}, \ldots, v_{n}\right)\right)
\end{gathered}
$$

at $\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)=\left(\mathrm{F}^{-1}(e), \mathrm{F}^{-1}(e)\right)$. When computing the partial derivative by u_{i}, we can first put $\left(v_{1}, \ldots, v_{n}\right)=\mathrm{F}^{-1}(e)$ before differentiation. This gives:

$$
\begin{aligned}
& \left.\frac{\partial}{\partial u_{i}} \mathrm{~F}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right) \mathrm{F}\left(v_{1}, \ldots, v_{n}\right)\right)\right|_{\left(\mathrm{F}^{-1}(e), \mathrm{F}^{-1}(e)\right)} \\
& =\left.\frac{\partial}{\partial u_{i}} \mathrm{~F}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right) e\right)\right|_{\mathrm{F}^{-1}(e)} \\
& =\left.\frac{\partial}{\partial u_{i}}\left(u_{1}, \ldots, u_{n}\right)\right|_{\mathrm{F}^{-1}(e)} \\
& =(0, \ldots, \underbrace{1}_{i}, \ldots, 0)
\end{aligned}
$$

Hence, $\left(\mu_{*}\right)_{(e, e)}\left(\frac{\partial}{\partial u_{i}}, 0\right)=\frac{\partial \mu}{\partial u_{i}}=\frac{\partial}{\partial w_{i}}$. Similarly:

$$
\left.\frac{\partial}{\partial v_{i}} \mathrm{~F}^{-1}\left(\mathrm{~F}\left(u_{1}, \ldots, u_{n}\right) \mathrm{F}\left(v_{1}, \ldots, v_{n}\right)\right)\right|_{\left(\mathrm{F}^{-1}(e), \mathrm{F}^{-1}(e)\right)}=(0, \ldots, \underbrace{1}_{i}, \ldots, 0)
$$

and so $\left(\mu_{*}\right)_{(e, e)}\left(0, \frac{\partial}{\partial v_{i}}\right)=\frac{\partial \mu}{\partial v_{i}}=\frac{\partial}{\partial w_{i}}$.
Given any $(X, Y) \in T_{(e, e)}(G \times G)$, express them in local coordinates:

$$
X=\sum_{i} X^{i} \frac{\partial}{\partial u_{i}} \quad \text { and } \quad Y=\sum_{j} Y^{j} \frac{\partial}{\partial v_{j}} .
$$

Then:

$$
\begin{aligned}
\left(\mu_{*}\right)_{(e, e)}(X, Y) & =\left(\mu_{*}\right)_{(e, e)}\left(\sum_{i} X^{i} \frac{\partial}{\partial u_{i}}, \sum_{j} Y^{j} \frac{\partial}{\partial v_{j}}\right) \\
& =\sum_{i} X^{i} \frac{\partial}{\partial w_{i}}+\sum_{j} Y^{j} \frac{\partial}{\partial w_{j}}=X+Y
\end{aligned}
$$

ii. Show that μ is a submersion at (e, e).

Solution: From (a)(i), the matrix representation of μ_{*} at (e, e) is given by [$\left.\begin{array}{ll}I_{n} & I_{n}\end{array}\right]$, which has full rank. Therefore, $\left(\mu_{*}\right)_{(e, e)}$ is surjective and so μ is a submersion at (e, e).
(b) Show that the tangent map of v at e is given by:

$$
\left(v_{*}\right)_{e}(X)=-X
$$

[Hint for part (a): when taking partial derivative $\frac{\partial f}{\partial u}$ at $(u, v)=\left(u_{0}, v_{0}\right)$, it is OK to substitute $v=v_{0}$ first, and then differentiate $f\left(u, v_{0}\right)$ by u. It is possible to prove (b) using the result from (a)i and the manifold chain rule in an appropriate way.]

Solution: Parametrize the domain G by $\mathrm{F}\left(u_{1}, \ldots, u_{n}\right)$ near e, and parametrize the target G using the same parametrization $\mathrm{F}\left(w_{1}, \ldots, w_{n}\right)$ near $v(e)=e$. We use different coordinate labels to avoid confusion.
Denote:

$$
\left(w_{1}, \ldots, w_{n}\right)=\mathrm{F}^{-1} \circ v \circ \mathrm{~F}\left(u_{1}, \ldots, u_{n}\right)
$$

then we need to find the Jacobian matrix at $\mathrm{F}^{-1}(e)$:

$$
\frac{\partial\left(w_{1}, \ldots, w_{n}\right)}{\partial\left(u_{1}, \ldots, u_{n}\right)} .
$$

Observe that:

$$
\mathrm{F}\left(w_{1}, \ldots, w_{n}\right) \mathrm{F}\left(u_{1}, \ldots, u_{n}\right)=e \quad \Longrightarrow \quad \mathrm{~F}^{-1}\left(\mathrm{~F}\left(w_{1}, \ldots, w_{n}\right) \mathrm{F}\left(u_{1}, \ldots, u_{n}\right)\right)=\mathrm{F}^{-1}(e) .
$$

Regarding w_{j} 's are functions of $u_{i}{ }^{\prime} \mathrm{s}$, we can apply the chain rule to differentiate both sides by u_{i} :

$$
\begin{aligned}
\frac{\partial}{\partial u_{i}} \underbrace{\mathrm{~F}^{-1}\left(\mathrm{~F}\left(w_{1}, \ldots, w_{n}\right) \mathrm{F}\left(u_{1}, \ldots, u_{n}\right)\right)}_{=: \mathcal{F}} & =(0, \ldots, 0) \\
\sum_{k} \frac{\partial \mathcal{F}}{\partial w_{k}} \frac{\partial w_{k}}{\partial u_{i}}+\frac{\partial \mathcal{F}}{\partial u_{i}} & =(0, \ldots, 0) .
\end{aligned}
$$

Similar to (a)(i), $\frac{\partial \mathcal{F}}{\partial w_{k}}=(0, \ldots, \underbrace{1}_{k}, \ldots, 0)=\mathrm{e}_{k}$ and $\frac{\partial \mathcal{F}}{\partial u_{i}}=(0, \ldots, \underbrace{1}_{i}, \ldots, 0)=\mathrm{e}_{i}$ at the point $\left(\mathrm{F}^{-1}(e), \mathrm{F}^{-1}(e)\right)$. Combining with above, we get:

$$
\left(\frac{\partial w_{1}}{\partial u_{i}}, \ldots, \frac{\partial w_{n}}{\partial u_{i}}\right)+(0, \ldots, \underbrace{1}_{i}, \ldots, 0)=(0, \ldots, 0)
$$

which implies $\frac{\partial w_{j}}{\partial u_{i}}=-\delta_{i j}$. Therefore, we have at $\mathrm{F}^{-1}(e)$:

$$
D\left(\mathrm{~F}^{-1} \circ v \circ \mathrm{~F}\right)=-I_{n}
$$

or equivalently, $\left(v_{*}\right)_{e}=-\mathrm{id}$.

Alternatively, one can show the same result by defining $v \times \mathrm{id}: G \rightarrow G \times G$ by $(v \times \mathrm{id})(g)=(v(g), g)$ and then considering the composition:

$$
\mu \circ(v \times \mathrm{id})(g)=\mu \circ(v(g), g)=v(g) g=e .
$$

Since it holds for any $g \in G$, the composition $\mu \circ(v \times \mathrm{id})$ is a constant map.
By the (manifold) chain rule, we have for any $X \in T_{e} G$:

$$
(\mu \circ(v \times \mathrm{id}))_{*}(X)=0 \quad \Longrightarrow \quad \mu_{*} \circ(v \times \mathrm{id})_{*}(X)=0 .
$$

It can be shown (detail omitted) that $(v \times \mathrm{id})_{*}(X)=\left(v_{*}(X), X\right)$. From (a), we then have at e :

$$
0=\mu_{*} \circ(v \times \mathrm{id})_{*}(X)=\mu_{*}\left(v_{*}(X), X\right)=v_{*}(X)+X,
$$

which implies $v_{*}(X)=-X$ at e.

