MATH 4033 • Spring 2018 • Calculus on Manifolds

 Problem Set \#3 - Tensors and Differential Forms • Due Date: 08/04/2018, 11:59PM1. Show that the Lie derivative of a 1 -form

$$
\alpha=\sum_{i} \alpha_{i} d u^{i}
$$

along a vector field $X=\sum_{j} X^{j} \frac{\partial}{\partial u_{j}}$ is locally expressed as:

$$
\mathcal{L}_{X} \alpha=\sum_{i, j}\left(X^{i} \frac{\partial \alpha_{j}}{\partial u_{i}}+\alpha_{i} \frac{\partial X^{i}}{\partial u_{j}}\right) d u^{j} .
$$

2. Consider a smooth manifold M^{n} and the following symmetric (2,0)-tensors on M :

$$
g=\sum_{i, j} g_{i j} d u^{i} \otimes d u^{j} \quad h=\sum_{i, j} h_{i j} d u^{i} \otimes d u^{j}
$$

where $\left(u_{1}, \ldots, u_{n}\right)$ are local coordinates of M. Suppose the matrix $\left[g_{i j}\right]$ is positive definite (all its eigenvalues are positive).
(a) Let $\left(v_{1}, \ldots, v_{n}\right)$ be another local coordinates system, and the local expression of g in terms of this system be:

$$
g=\sum_{i, j} \widetilde{g}_{i j} d v^{i} \otimes d v^{j} .
$$

Express $\widetilde{g}_{i j}$ in terms of $g_{i j}$, and then show that the matrix $\left[\widetilde{g}_{i j}\right]$ is also symmetric and positive definite.
(b) Show that the quantity $\frac{\operatorname{det}\left[h_{i j}\right]}{\operatorname{det}\left[g_{i j}\right]}$ is independent of local coordinates, i.e.

$$
\frac{\operatorname{det}\left[h_{i j}\right]}{\operatorname{det}\left[g_{i j}\right]}=\frac{\operatorname{det}\left[\widetilde{h}_{i j}\right]}{\operatorname{det}\left[\widetilde{g}_{i j}\right]} .
$$

3. Define a 2 -form ω on \mathbb{R}^{3} by

$$
\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Express ω in spherical coordinates (ρ, θ, φ) defined by:

$$
\begin{aligned}
& x=\rho \sin \varphi \cos \theta \\
& y=\rho \sin \varphi \sin \theta \\
& z=\rho \cos \varphi
\end{aligned}
$$

(b) Compute $d \omega$ in both rectangular and spherical coordinates.
(c) Let S^{2} be the unit sphere $x^{2}+y^{2}+z^{2}=1$ in \mathbb{R}^{3}. Consider the inclusion map $\iota: \mathrm{S}^{2} \rightarrow$ \mathbb{R}^{3}. Compute the pull-back $\iota^{*} \omega$, and express it in terms of spherical coordinates.
(d) Let $\delta=d x \otimes d x+d y \otimes d y+d z \otimes d z$ be a symmetric (2,0)-tensor on \mathbb{R}^{3}. Compute $\iota^{*} \delta$, and express it in terms of spherical coordinates.
4. The purpose of this exercise is to show that any closed 1-form ω on \mathbb{R}^{3} must be exact. Let

$$
\omega=P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z
$$

be a closed 1-form on \mathbb{R}^{3}. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by:

$$
f(x, y, z)=\int_{t=0}^{t=1}(x P(t x, t y, t z)+y Q(t x, t y, t z)+z R(t x, t y, t z)) d t
$$

(a) Show that $d f=\omega$.
(b) Point out exactly where you have used the fact that $d \omega=0$ in your solution to (a).
(c) Explain why your solution to (a) would fail if the domain of ω is $\mathbb{R}^{3} \backslash\{p\}$ (where p is a fixed point in \mathbb{R}^{3}).
5. Consider \mathbb{R}^{4} with coordinates (t, x, y, z), which is also denoted as $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ in this problem. Denote $*$ to be the Minkowski Hodge-star operator on \mathbb{R}^{4} (see P.104).
(a) Compute each of the following:

$$
\begin{array}{lll}
*(d t \wedge d x) & *(d t \wedge d y) & *(d t \wedge d z) \\
*(d x \wedge d y) & *(d y \wedge d z) & *(d z \wedge d x)
\end{array}
$$

(b) The four Maxwell's equations are a set of partial differential equations that form the foundation of electromagnetism. Denote the components of the electric field E, magnetic field B, and current density J by

$$
\begin{aligned}
\mathrm{E} & =E_{x} \mathrm{i}+E_{y} \mathrm{j}+E_{z} \mathrm{k} \\
\mathrm{~B} & =B_{x} \mathrm{i}+B_{y} \mathrm{j}+B_{z} \mathrm{k} \\
\mathrm{~J} & =j_{x} \mathrm{i}+j_{y} \mathrm{j}+j_{z} \mathrm{k}
\end{aligned}
$$

All components of E, B and J are considered to be time-dependent. Denote ρ to be the charge density. The four Maxwell's equations assert that:

$$
\begin{aligned}
\nabla \cdot \mathrm{E} & =\rho & \nabla \cdot \mathrm{B} & =0 \\
\nabla \times \mathrm{E} & =-\frac{\partial \mathrm{B}}{\partial t} & \nabla \times \mathrm{B} & =\mathrm{J}+\frac{\partial \mathrm{E}}{\partial t}
\end{aligned}
$$

We are going to convert the Maxwell's equations using the language of differential forms. We define the following analogue of E, B, J and ρ using differential forms:

$$
\begin{aligned}
E & =E_{x} d x+E_{y} d y+E_{z} d z \\
B & =B_{x} d y \wedge d z+B_{y} d z \wedge d x+B_{z} d x \wedge d y \\
J & =\left(j_{x} d y \wedge d z+j_{y} d z \wedge d x+j_{z} d x \wedge d y\right) \wedge d t+\rho d x \wedge d y \wedge d z
\end{aligned}
$$

Define the 2-form F by $F:=B+E \wedge d t$. Show that the four Maxwell's equations can be rewritten in an elegant way as:

$$
d F=0 \quad d(* F)=J
$$

