
MATH 4033 • Spring 2018 • Calculus on Manifolds
Problem Set #1 • Regular Surfaces • Due Date: 25/02/2018, 11:59PM (Optional)

Remark: All assignments are optional but you are strongly recommended to work on them to keep
yourself on track. You are welcome to submit any part of your homework to the Canvas system by the
deadline. Follow the instructions posted on Canvas. The instructor and TA will give you some feedback
as soon as possible.

1. Consider a smooth map F(u, v) : U ⊂ R2 → R3 where U is an open set. Denote:

F(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
.

Show that the following are equivalent:

(a)
∂F

∂u
× ∂F

∂v
6= 0 for any (u, v) ∈ U .

(b)
{

∂F

∂u
,

∂F

∂v

}
are linearly independent for any (u, v) ∈ U .

(c) The Jacobian matrix:

∂(x, y, z)
∂(u, v)

:=

xu xv
yu yv
zu zv


has a trivial null-space for any (u, v) ∈ U .

(d) For any (u, v) ∈ U , at least one of the following Jacobian matrices is invertible:

∂(x, y)
∂(u, v)

∂(y, z)
∂(u, v)

∂(z, x)
∂(u, v)

(e) The matrix:

[g] :=
[
Fu · Fu Fu · Fv
Fv · Fu Fv · Fv

]
is positive definite1 for any (u, v) ∈ U .

Solution: We will show (a)⇐⇒ (e), and then (a) =⇒ (b)⇐⇒(c) =⇒ (d) =⇒ (a).

Denote θ to be the angle between ∂F
∂u and ∂F

∂v . To show (a)⇐⇒ (e), we observe that:

det[g] =
∣∣∣∣∂F∂u

∣∣∣∣2 ∣∣∣∣∂F∂v

∣∣∣∣2 −(∂F

∂u
· ∂F

∂v

)2

=

∣∣∣∣∂F∂u

∣∣∣∣2 ∣∣∣∣∂F∂v

∣∣∣∣2 − ∣∣∣∣∂F∂u

∣∣∣∣2 ∣∣∣∣∂F∂v

∣∣∣∣2 cos2 θ

=

∣∣∣∣∂F∂u

∣∣∣∣2 ∣∣∣∣∂F∂v

∣∣∣∣2 sin2 θ =

∣∣∣∣∂F∂u
× ∂F

∂v

∣∣∣∣2
Therefore, Fu × Fv 6= 0 at (u, v) if and only if det[g] > 0 at (u, v). Furthermore, [g] is
symmetric so its eigenvalues λ1 and λ2 must be real. Since Tr[g] = |Fu|2 + |Fv|2 ≥ 0,
so we always have λ1 + λ2 ≥ 0. As a result, we know that det[g] = λ1λ2 > 0 if and
only if λ1 > 0 and λ2 > 0. It proves (a)⇐⇒ (e).

(a) =⇒ (b): If Fu × Fv 6= 0, then the angle θ between Fu and Fv is neither 0 nor π,
and that Fu and Fv are non-zero vectors. Therefore {Fu,Fv} are non-zero, non-parallel
vectors, and equivalently they are linearly independent.

1A symmetric matrix being positive definite means all of its eigenvalues are positive.
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(b)⇐⇒ (c): It follows immediately from the observation that:xu xv
yu yv
zu zv

 [a
b

]
=

0
0
0

 ⇐⇒ aFu + bFv = 0.

(c) =⇒ (d): If (c) holds, then (b) holds as well and so {Fu,Fv} span a two dimen-
sional subspace of R3. Pick any vector x = (a, b, c)T such that {Fu,Fv, x} are linearly
independent vectors in R3 (for example Fu × Fv will do the job). Then the matrix:xu xv a

yu yv b
zu zv c


is invertible. Consider its determinant and its co-factor expansion:

0 6= det

xu xv a
yu yv b
zu zv c

 = a det
∂(y, z)
∂(u, v)

+ b det
∂(z, x)
∂(u, v)

+ c det
∂(x, y)
∂(u, v)

.

Clearly, at least one of the determinants:

det
∂(y, z)
∂(u, v)

det
∂(z, x)
∂(u, v)

det
∂(x, y)
∂(u, v)

must be non-zero. It proves (d).

(d) =⇒ (a): It follows immediately from the cross-product formula:

Fu × Fv =

(
det

∂(y, z)
∂(u, v)

, det
∂(z, x)
∂(u, v)

, det
∂(x, y)
∂(u, v)

)
.

2. Let A be a 3× 3 matrix with real entries [aij]. Consider the set

Σ := {x ∈ R3 : x · Ax = 1}.

Here x ∈ R3 is regarded as a column vector.

(a) Show that Σ is a regular surface whenever Σ 6= ∅.

Solution: Define g(x) := x · Ax and let {ei}i=1,2,3 be the standard basis in R3. For
any x0 ∈ g−1(1), i.e. x0 · Ax0 = 1.

∂

∂xi
g(x0) = ei · Ax0 + x0 · Aei

= ei · Ax0 + Aei · x0

= ei · Ax0 + ei · ATx0

= ei · (A + AT)x
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If
∂

∂xi
g(x0) = 0 for all i = 1, 2, 3, then (A + AT)x0 = 0 which implies

x0 · (A + AT)x0 = 0.

However,

x0 · (A + AT)x0 = x0 · Ax0 + x0 · ATx0

= x0 · Ax0 + Ax0 · x0

= 1 + 1
= 2 6= 0.

Hence, ∇g(x0) =

(
∂

∂x1
g(x0),

∂

∂x2
g(x0),

∂

∂x3
g(x0)

)
6= 0. By Theorem 1.6 in the

lecture note, Σ = g−1(1) is a regular surface.

(b) Suppose further that A = PTDP for some orthogonal matrix P (i.e. PTP = I) and
diagonal matrix D = diag(λ1, λ2, λ3).

i. Show that Σ is diffeomorphic to S2 if λi > 0 for all i.

Solution: Given D = diag(λ1, λ2, λ3), denote
√

D = diag(
√

λ1,
√

λ2,
√

λ3).
Define a linear transformation:

Φ(x) :=
√

DPx.

Then for any x ∈ Σ,

|
√

DPx|2 = (
√

DPx)T
√

DPx = xTPT
√

D
√

DPx = xTPTDPx = x · Ax = 1.

It implies
√

DPx ∈ S2. Hence Φ restricts to a map

Φ : Σ→ S2.

The inverse Φ−1 : S2 → Σ exists and it is given by Φ−1(y) = PT
√

D
−1

y (one
can verify as above that if |y| = 1, then Φ−1(y) ∈ Σ).
Since Φ(x) =

√
DPx is a linear transformation in R3, it is a smooth map

between R3. To show it is smooth as a map from Σ to S2, we observe that
both Σ and S2 are level surfaces of functions satisfying the condition stated in
Theorem 1.6. In the proof of Theorem 1.6, we know that they can be locally
parametrized as graphs of smooth functions.
Therefore, for any graphical local parametrizations F of Σ, and G of S2, the
composition G−1 ◦Φ ◦ F is smooth since G−1 is just a projection map.
A similar argument applied to F−1 ◦Φ−1 ◦ G shows Φ−1 is smooth. Hence Σ
is diffeomorphic to S2.
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ii. Show that Σ is diffeomorphic to the cylinder x2 + y2 = 1 if λ1, λ2 > 0, and
λ3 = 0.

Solution: Define a linear transformation

L(x) :=

√λ1 0 0
0

√
λ2 0

0 0 1

 Px.

We first show it restricts to a map from Σ to the cylinder C = {x2 + y2 = 1}.
For any x ∈ Σ, denote

z =

z1
z2
z3

 := Lx =

√λ1 0 0
0

√
λ2 0

0 0 1

 Px.

which implies: z1
z2
0

 =

√λ1 0 0
0

√
λ2 0

0 0 0

 Px.

We need to show z ∈ C. Observe that:

z2
1 + z2

2 =

z1
z2
0

T z1
z2
0


=

√λ1 0 0
0

√
λ2 0

0 0 0

 Px

T √λ1 0 0
0

√
λ2 0

0 0 0

 Px

= xTPTDPx = xT Ax = 1,

which implies z is on the cylinder.
Clearly, L is invertible and we have

L−1 = PT


1√
λ1

0 0
0 1√

λ2
0

0 0 1

 .

For any y =

y1
y2
y3

 lies on the cylinder, i.e. y2
1 + y2

2 = 1,

(
L−1y

)
· PTDP

(
L−1y

)
=

√λ1 0 0
0

√
λ2 0

0 0 0

 P
(

L−1y
)
·

√λ1 0 0
0

√
λ2 0

0 0 0

 P
(

L−1y
)

=

1 0 0
0 1 0
0 0 0

y1
y2
y3

 ·
1 0 0

0 1 0
0 0 0

y1
y2
y3


= y2

1 + y2
2

= 1 ,
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which implies L−1y ∈ Σ.
Since L is a linear transformation, L is smooth as a map between R3. By
the same reason as in (b)(i), it restricts to a smooth map between Σ and C.
Similarly for L−1. Hence Σ is diffeomorphic to the cylinder x2 + y2 = 1.

3. Let S2 be the unit sphere x2 + y2 + z2 = 1 in R3. Suppose f : S2 → (0, ∞) is a smooth,
positive-valued function. Consider the set Σ defined by:

Σ := { f (x) x : x ∈ S2}.

(a) Suppose F(u, v) : U → S2 is a smooth local parametrization of S2. Show that:

G : U → Σ

(u, v) 7→ f
(
F(u, v)

)
F(u, v)

is a smooth local parametrization of Σ. Hence, show that Σ is a regular surface.

Solution: Condition (1): Since f is smooth, the composition f ◦ F : U → R is also
smooth. Combining with the fact that F : U → R3 is smooth, we conclude that G
is a smooth function from U to R3.
Condition (2): We first show that G is injective. Given any (u, v), (u′, v′) ∈ U such
that G(u, v) = G(u′, v′), we have

f (F(u, v))F(u, v) = f (F(u′, v′))F(u′, v′). (*)

Since |F| = 1 (unit sphere) and f > 0, it follows from taking || on (*) that:

| f (F(u, v))F(u, v)| =
∣∣ f (F(u′, v′))F(u′, v′)

∣∣ =⇒ f (F(u, v)) = f (F(u′, v′)).

From (*) again, we have F(u, v) = F(u′, v′). As F is injective, we get (u, v) =
(u′, v′) showing that G is injective, and G−1 can be defined.

We next claim that G−1(x, y, z) = F−1
(

(x,y,z)√
x2+y2+z2

)
. Given (x, y, z) = G(u, v), we

need to solve (u, v) in terms of (x, y, z). By the definition of G, we get:

(x, y, z) = f (F(u, v)) F(u, v).

Since |F| = 1 (unit sphere) and f > 0, we get have:√
x2 + y2 + z2 = |(x, y, z)| = | f (F(u, v))| |F(u, v)| = f (F(u, v)).

This implies (x, y, z) =
√

x2 + y2 + z2 F(u, v) =⇒ F(u, v) = (x,y,z)√
x2+y2+z2

.

Hence (u, v) = F−1
(

(x,y,z)√
x2+y2+z2

)
as desired. This verifies that G−1(x, y, z) =

F−1
(

(x,y,z)√
x2+y2+z2

)
, which is continuous as F−1 is so and that (x, y, z) 6= 0 for any

(x, y, z) ∈ Σ.
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Condition (3): Finally, we compute that:

∂G

∂u
=

∂( f ◦ F)
∂u

F+ f (F(u, v))
∂F

∂u
∂G

∂v
=

∂( f ◦ F)
∂v

F+ f (F(u, v))
∂F

∂v
∂G

∂u
× ∂G

∂v
= f

∂ f
∂u

F× ∂F

∂v
+ f

∂ f
∂v

∂F

∂u
× F+ f 2 ∂F

∂u
× ∂F

∂v
.

Note that F parametrizes the unit sphere, so Fu×Fv and F are parallel (the former
is a normal vector). Since they are non-zero vectors, we have (Fu × Fv) · F 6= 0.
On the other hand, F · (F× Fu) = F · (F× Fv) = 0. Finally, we get:

F ·
(

∂G

∂u
× ∂G

∂v

)
= f 2F ·

(
∂F

∂u
× ∂F

∂v

)
6= 0.

Therefore, Gu × Gv 6= 0, showing condition (3).
For any point y ∈ Σ, there exists x ∈ S2 such that y = f (x) x. Let F be a smooth
local parametrization covering x, then its induced parametrization G will cover y.
Hence, Σ is a regular surface.

(b) Let Fi(u, v) : Ui → S2, where i = 1, 2, be two overlapping smooth local parametriza-
tions of S2, and Gi : Ui → Σ be the parametrization of Σ induced by Fi. Show that
G−1

1 ◦ G2 = F−1
1 ◦ F2.

Solution: From (a), we know that

G−1(x, y, z) = F−1

(
(x, y, z)√

x2 + y2 + z2

)
.

To prove the claim in this part, we consider:

G−1
1 ◦ G2(u, v) = G−1

1

(
f (F2(u, v)) F2(u, v)

)
= F−1

1

(
f (F2(u, v)) F2(u, v)
| f (F2(u, v)) F2(u, v)|

)
= F−1

1

(
F2(u, v)

)
(since f > 0 and |F2| = 1)

= F−1
1 ◦ F2(u, v)

as desired. Concerning the domains of G−1
1 ◦ G2 and F−1

1 ◦ F2, we can check that
they are the same:

(u, v) ∈ G−1
2
(
G1(U1) ∩ G2(U2)

)
⇐⇒ G2(u, v) ∈ G1(U1) ∩ G2(U2)

⇐⇒ f (F2(u, v))F2(u, v) ∈ Gi(Ui) for i = 1, 2
⇐⇒ F2(u, v) ∈ Fi(Ui) for i = 1, 2

⇐⇒ (u, v) ∈ F−1
2
(
F1(U1) ∩ F2(U2)

)
.

Hence, their domains are the same. In the third step above, the =⇒-part follows
from the fact that f > 0 and |Fi| = 1.
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(c) Show that S2 and Σ are diffeomorphic. Write down the diffeomorphism explicitly.

Solution: Define Ψ : S2 → Σ by Ψ(x) = f (x) x. It is clearly surjective by
the definition of Σ. To show it is injective, we consider x1, x2 ∈ S2 such that
f (x1) x1 = f (x2) x2. Since both x1 and x2 are unit and f > 0, we get f (x1) |x1| =
f (x2) |x2| =⇒ f (x1) = f (x2). This shows x1 = x2 as well. This shows Ψ is
injective.
Next we show Ψ and Ψ−1 are smooth. Given any smooth local parametrization
F : U → S2, and its induced parametrization G. Observing that Ψ(F(u, v)) =
G(u, v), we can verify that

G−1 ◦Ψ ◦ F(u, v) = G−1 ◦ G(u, v) = (u, v)

F−1 ◦Ψ−1 ◦ G(u, v) = (G−1 ◦Ψ ◦ F)−1(u, v) = (u, v).

The local expressions of both Ψ and Ψ−1 are the identity maps, which are clearly
smooth. Therefore, Ψ is a diffeomorphism between S2 and Σ.

(d) Define a map Φ : R3\{(0, 0, 0)} → R3\{(0, 0, 0)} by:

Φ(x) =
x

|x|2
.

Denote Σ∗ := Φ(Σ), i.e. the image of Σ under the map Φ.
i. Explain why Σ∗ is also a regular surface.

Solution: By definition of Φ, we have:

Σ∗ =
{

Φ ( f (x)x) : x ∈ S2} =

{
1

f (x)
x : x ∈ S2

}
.

Hence Σ∗ is simply Σ with f replaced by 1/ f . As f is a positive smooth
function on S2, then so does 1/ f . By (a), Σ∗ is also a regular surface.

ii. Let φ : Σ→ Σ∗ be the restriction of Φ on Σ. Show that φ is a diffeomorphism.

Solution: Parametrize S2 by F(u, v) as in (b), and parametrize Σ and Σ∗

respectively by:

GΣ(u, v) = f (F(u, v))F(u, v)

GΣ∗(u, v) =
1

f (F(u, v))
F(u, v)

By observing that

φ( f (x)x) =
1

f (x)
x,

one can easily check that:

G−1
Σ∗ ◦ φ ◦ GΣ(u, v) = (u, v).

Hence φ is smooth, and so does φ−1 (as the coordinate representation is also
the identity).
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iii. Show that for any p ∈ Σ, the tangent map (φ∗)p : TpΣ→ Tφ(p)Σ∗ at p is:

(φ∗)p(V) =
|p|2 V − 2(p ·V)p

|p|4

where |p| is the norm of p in R3, and p · V is the usual dot product of p and V
in R3.

Solution: From (ii), the coordinate representation (with respect to parametriza-
tions GΣ and GΣ∗) of φ is the identity. Hence, (φ∗)p maps ∂GΣ

∂u (p) to ∂GΣ∗
∂u (φ(p)),

and maps ∂GΣ
∂v (p) to ∂GΣ∗

∂v (φ(p)).
To prove the desired result, we observe that the map:

V 7→ |p|
2 V − 2(p ·V)p

|p|4

is linear (note that p is fixed), so it suffices to verify the desired result when V
are basis vectors ∂GΣ

∂u (p) and ∂GΣ
∂v (p).

(φ∗)p

(
∂GΣ

∂u
(p)
)
=

∂GΣ∗

∂u
(φ(p))

=
∂( 1

f (F(u,v)) )

∂u
F(u, v) +

1
f (F(u, v))

∂F

∂u

= − 1
f (F(u, v))2

∂ f
∂u

F(u, v) +
1

f (F(u, v))
∂F

∂u

Here (u, v) is the local coordinate of p under the parametrization G, i.e. G(u, v) =
p, or equivalently, f (F(u, v))F(u, v) = p. In particular, |p| = f (F(u, v)) as F is a
parametrization of the unit sphere.
On the other hand, we have

|p|2 ∂GΣ
∂u (p)− 2

(
p · ∂GΣ

∂u (p)
)

p

|p|4

=
1

|p|2

(
∂ f
∂u

F(u, v) + f (F(u, v))
∂F

∂u

)
− 2

p

|p|4
f (F(u, v))F(u, v) ·

(
∂ f
∂u

F(u, v) + f (F(u, v))
∂F

∂u

)
=

1
f (F(u, v))2

∂ f
∂u

F(u, v) +
1

f (F(u, v))
∂F

∂u
− 2

p

|p|4
f (F(u, v))

∂ f
∂u

.

Here we used the fact that F · F = 1 and F · ∂F
∂u = 0 (for round spheres). Using the

fact again that p = f (F(u, v))F(u, v), one can complete the proof that:

|p|2 ∂GΣ
∂u (p)− 2

(
p · ∂GΣ

∂u (p)
)

p

|p|4
= − 1

f (F(u, v))2
∂ f
∂u

F(u, v) +
1

f (F(u, v))
∂F

∂u
.

This shows

(φ∗)p(V) =
|p|2 V − 2(p ·V)p

|p|4
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when V = ∂GΣ
∂u , and similarly it holds when V = ∂GΣ

∂v . By linearity, the desired
result holds for any V ∈ TpΣ.

4. Let F+ and F− be the stereographic parametrizations of the unit sphere S2 as discussed in
Example 1.5 of the lecture notes. Here we regard C as R2 by identifying z = u + iv ∈ C

with (u, v) ∈ R2. Then, F+ : C→ S2\{(0, 0, 1)} and its inverse can be expressed as:

F+(z) =

(
2Re(z)

|z|2 + 1
,

2Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
F−1
+ (x1, x2, x3) =

x1 + x2i
1− x3

Here we use (x1, x2, x3) for coordinates of R3 instead of (x, y, z) to avoid notation conflicts.

(a) Consider the south-pole stereographic parametrization F− : C → S2\{(0, 0,−1)}.
Find the explicit expressions of F−(z), where z ∈ C, and F−1

− (x1, x2, x3), where
(x1, x2, x3) ∈ S2\{(0, 0,−1)}.

Solution:

F−(z) =

(
2Re(z)

|z|2 + 1
,

2Im(z)

|z|2 + 1
,

1− |z|2

|z|2 + 1

)
F−1
− (x1, x2, x3) =

x1 + x2i
1 + x3

(b) Verify that:

F−1
− ◦ F+(z) =

1
z

F−1
+ ◦ F−(z) =

1
z

.

State the domains on which they are defined.

Solution: By direct calculation,

F−1
− ◦ F+(z)

= F−1
−

(
2Re(z)

|z|2 + 1
,

2Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)

=

2Re(z)
|z|2+1

+ 2Im(z)
|z|2+1

i

1 + |z|2−1
|z|2+1

=
Re(z) + iIm(z)

|z|2

=
z
zz

=
1
z
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and its domain is C\{0}. Similarly,

F−1
+ ◦ F−(z)

= F−1
+

(
2Re(z)

|z|2 + 1
,

2Im(z)

|z|2 + 1
,

1− |z|2

|z|2 + 1

)

=

2Re(z)
|z|2+1

+ 2Im(z)
|z|2+1

i

1− 1−|z|2

|z|2+1

=
Re(z) + iIm(z)

|z|2

=
1
z

and its domain is C\{0}.

(c) Consider the complex-valued function f (z) =
αz + β

γz + δ
where α, β, γ, δ ∈ C\{0} such

that αδ 6= βγ. Define a map Φ : S2 → S2 by:

Φ(p) :=


F+(α/γ) if p = (0, 0, 1)
(0, 0, 1) if p = F+(−δ/γ)

F+ ◦ f ◦ F−1
+ (p) otherwise

i. Show that Φ is bijective.

Solution: We claim that the following map is the inverse of Φ:

Ψ(p) :=


F+(−δ/γ) if p = (0, 0, 1)
(0, 0, 1) if p = F+(α/γ)

F+ ◦ g ◦ F−1
+ (p) otherwise

where g : C\{α/γ} → C\{−δ/γ} is defined by

g(w) =
β− δw
γw− α

.

By direct computations, one can check f ◦ g(w) = w and g ◦ f (z) = z. Hence,
f−1 = g. Next we verify that:

Ψ(Φ(p)) =


Ψ ◦ F+(α/γ) = (0, 0, 1) = p if p = (0, 0, 1)
Ψ(0, 0, 1) = F+(α/γ) = p if p = F+(−δ/γ)

F+ ◦ g ◦ F−1
+ (F+ ◦ f ◦ F−1

+ (p)) = p otherwise

Similarly, one can also verify that Φ(Ψ(p)) = p for any p ∈ S2. Hence Φ is
bijective with inverse Ψ.

ii. Find an explicit expression of each of the following:

F−1
+ ◦Φ ◦ F+(z) F−1

− ◦Φ ◦ F+(z) F−1
+ ◦Φ ◦ F−(z) F−1

− ◦Φ ◦ F−(z)
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State the domain of each of them.

Solution: By direct calculations, we have

F−1
+ ◦Φ ◦ F+(z) =

αz + β

γz + δ

The domain of F−1
+ ◦Φ ◦ F+(z) is C\{−δ/γ}.

F−1
− ◦Φ ◦ F+(z) =

γz + δ

αz + β

The domain of F−1
− ◦Φ ◦ F+(z) is C\{−β/α}.

F−1
+ ◦Φ ◦ F−(z) =

α + βz
γ + δz

The domain of F−1
+ ◦Φ ◦ F−(z) is C\{−γ/δ}.

F−1
− ◦Φ ◦ F−(z) =

γ + δz
α + βz

The domain of F−1
− ◦Φ ◦ F−(z) is C\{−α/β}.

iii. Show that Φ is smooth at the point (0, 0, 1).

Solution: We pick F− as a smooth local parametrization and (0, 0, 1) =
F−(0). By part ii, we have

F−1
− ◦Φ ◦ F−(z) =

γ + δz
α + βz

which is holomorphic on C\{−α/β}, so it is smooth. Since S2 is a regu-
lar surface, by Proposition 1.11 in the lecture note, the transition maps are
smooth. Hence, for any local parametrization G , G−1 ◦Φ ◦ G(z) is smooth.
Therefore, Φ is smooth at the point (0, 0, 1).

iv. Show that tangent map Φ∗ at (0, 0, 1) is invertible.

Solution: A matrix representation of Φ∗ at (0, 0, 1) is the Jacobian matrix of
the map:

F−1
− ◦Φ ◦ F−(z) =

γ + δz
α + βz

at z = 0 (since F−(0) = (0, 0, 1)).
Write z = u + iv, we need to compute

∂

∂u

(
γ + δz
α + βz

)
and

∂

∂v

(
γ + δz
α + βz

)

at (u, v) = (0, 0).
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Observing that ∂z
∂u = 1 and ∂z

∂v = i, we can directly compute that:

U :=
∂

∂u

(
γ + δz
α + βz

) ∣∣∣∣
z=0

=
(α + βz)δ− (γ + δz)β

(α + βz)2

∣∣∣∣
z=0

=
αδ− βγ

α2

V :=
∂

∂v

(
γ + δz
α + βz

) ∣∣∣∣
z=0

=
(α + βz)δi− (γ + δz)βi

(α + βz)2

∣∣∣∣
z=0

=
αδ− βγ

α2 i.

For simplicity, denote

Z :=
αδ− βγ

α2 6= 0,

then U = Re(Z) + iIm(Z) and V = −Im(Z) + iRe(Z), and hence

[Φ∗](0,0,1) =

[
Re(Z) −Im(Z)
Im(Z) Re(Z)

]
,

whose determinant is |Z|2 6= 0.
Therefore, Φ∗ is invertible at (0, 0, 1).
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