MATH 4033 • Spring 2018 • Calculus on Manifolds

 Problem Set \#2 • Abstract Manifolds • Due Date: 11/03/2018, 11:59PMInstructions: "Outsource" all topological issues to MATH 4225. Make fair use of the word "similarly" to reduce your workload.

1. Suppose Σ is a n-dimensional topological manifold in \mathbb{R}^{n+1} (where $n \geq 2$) equipped with a family of local parametrizations $\left\{\mathrm{F}_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \Sigma\right\}$ covering the whole Σ and satisfying the following conditions:
2. Each F_{α} is smooth as a map from \mathcal{U}_{α} to \mathbb{R}^{n+1}
3. Each F_{α} is a homeomorphism onto its image $F_{\alpha}\left(\mathcal{U}_{\alpha}\right)$.
4. Regarding $\left(x_{1}, \ldots, x_{n+1}\right)=\mathrm{F}_{\alpha}\left(u_{1}, \ldots, u_{n}\right)$, the Jacobian matrix

$$
\frac{\partial\left(x_{1}, \ldots, x_{n+1}\right)}{\partial\left(u_{1}, \ldots, u_{n}\right)}
$$

at every $\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{U}_{\alpha}$ has a trivial null-space.
(a) Show that Σ is an n-dimensional smooth manifold.
(b) Show further that Σ is a submanifold of \mathbb{R}^{n+1}.
2. The complex projective plane $\mathbb{C P}^{1}$ is defined as follows:

$$
\mathbb{C P}^{1}:=\left\{\left[z_{0}: z_{1}\right]:\left(z_{0}, z_{1}\right) \neq(0,0)\right\} .
$$

Here z_{0}, z_{1} are complex numbers, and we declare $\left[z_{0}: z_{1}\right]=\left[w_{0}: w_{1}\right]$ if and only if $\left(z_{0}, z_{1}\right)=\lambda\left(w_{0}, w_{1}\right)$ for some $\lambda \in \mathbb{C} \backslash\{0\}$.
(a) Show that $\mathbb{C P}^{1}$ is a smooth manifold of (real) dimension 2.
(b) Show that $\mathbb{C P}^{1}$ and the sphere S^{2} are diffeomorphic. [Hint: consider stereographic projections]
3. Consider the following equivalence relation \sim defined on \mathbb{R}^{2} :

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \Longleftrightarrow \quad\left(x^{\prime}, y^{\prime}\right)=\left((-1)^{n} x+m, y+n\right) \text { for some integers } m \text { and } n
$$

(a) Sketch an edge-identified square to represent the quotient space \mathbb{R}^{2} / \sim.
(b) Consider the two parametrizations of \mathbb{R}^{2} / \sim :

$$
\begin{aligned}
\mathrm{G}_{1}:(0,1) \times(0,1) & \rightarrow \mathbb{R}^{2} / \sim & \mathrm{G}_{2}:(0,1) \times(0.5,1.5) & \rightarrow \mathbb{R}^{2} / \sim \\
(x, y) & \mapsto[(x, y)] & (x, y) & \mapsto[(x, y)]
\end{aligned}
$$

Find the transition map $G_{2}^{-1} \circ \mathrm{G}_{1}$.
(c) Write down a diffeomorphism between \mathbb{R}^{2} / \sim and the Klein bottle K in \mathbb{R}^{4} described in Example 2.16.
4. Consider the following subset of $\mathbb{R}^{2} \times \mathbb{R P}^{1}$

$$
M=\left\{\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right) \in \mathbb{R}^{2} \times \mathbb{R}^{1} \mid x_{1} y_{2}=y_{1} x_{2}\right\}
$$

(a) Show that M is a smooth 2-manifold by considering the following parametrizations:

$$
\begin{aligned}
& \mathrm{F}\left(u_{1}, u_{2}\right)=\left(\left(u_{1} u_{2}, u_{2}\right),\left[u_{1}: 1\right]\right) \\
& \mathrm{G}\left(v_{1}, v_{2}\right)=\left(\left(v_{1}, v_{1} v_{2}\right),\left[1: v_{2}\right]\right)
\end{aligned}
$$

(b) Consider the two projection maps $\pi_{1}: M \rightarrow \mathbb{R}^{2}$ and $\pi_{2}: M \rightarrow \mathbb{R} \mathbb{P}^{1}$ defined by:

$$
\begin{aligned}
& \pi_{1}\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right)=\left(x_{1}, x_{2}\right) \\
& \pi_{2}\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right)=\left[y_{1}: y_{2}\right]
\end{aligned}
$$

i. Show that $\pi_{1}^{-1}(p)$ is either a point, or diffeomorphic to $\mathbb{R P}^{1}$.
ii. Show that π_{2} is a submersion.
5. The tangent bundle $T M$ of a smooth n-manifold M is the disjoint union of all tangent spaces of M, i.e.

$$
T M:=\bigcup_{p \in M}\{p\} \times T_{p} M=\left\{\left(p, V_{p}\right): p \in M \text { and } V_{p} \in T_{p} M\right\}
$$

(a) Show that TM is a smooth $2 n$-manifold. [Again, skip the topological parts, but show detail work of the differentiable parts.]
(b) Show that the map $\pi: T M \rightarrow M$ defined by $\pi\left(p, V_{p}\right):=p$ is a submersion.
(c) Define the subset $\Sigma_{0}:=\left\{\left(p, 0_{p}\right) \in T M: p \in M\right\}$ where 0_{p} is the zero vector in $T_{p} M$. This set Σ_{0} is called the zero section of the tangent bundle. Show that Σ_{0} is a smooth n-manifold diffeomorphic to M, and that it is a submanifold of $T M$.
(d) Now suppose M is just a C^{k}-manifold (where $k \geq 2$), then $T M$ is a $C^{\text {what? }}$-manifold?
6. A Lie group G is a smooth manifold such that multiplication and inverse maps

$$
\begin{array}{rlrl}
\mu: G \times G & \rightarrow G & v: G & \rightarrow G \\
(g, h) & \mapsto g h & g & \mapsto g^{-1}
\end{array}
$$

are both smooth $\left(C^{\infty}\right)$ maps. As an example, $\operatorname{GL}(n, \mathbb{R})$ is a Lie group since it is an open subset of $M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$, hence it can be globally parametrized using coordinates of $\mathbb{R}^{n^{2}}$. The multiplication map is given by products and sums of coordinates in $\mathbb{R}^{n^{2}}$, hence it is smooth. The inverse map is smooth too by the Cramer's rule $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(\mathrm{A})$ and that $\operatorname{det}(A) \neq 0$ for any $A \in \operatorname{GL}(n, \mathbb{R})$.
(a) Recall that $T_{(e, e)}(G \times G)$ can be identified with $T_{e} G \oplus T_{e} G=\left\{(X, Y): X, Y \in T_{e} G\right\}$.
i. Show that the tangent map of μ at (e, e) is given by:

$$
\left(\mu_{*}\right)_{(e, e)}(X, Y)=X+Y .
$$

ii. Show that μ is a submersion at (e, e).
(b) Show that the tangent map of v at e is given by:

$$
\left(v_{*}\right)_{e}(X)=-X
$$

[Hint for part (a): when taking partial derivative $\frac{\partial f}{\partial u}$ at $(u, v)=\left(u_{0}, v_{0}\right)$, it is OK to substitute $v=v_{0}$ first, and then differentiate $f\left(u, v_{0}\right)$ by u. It is possible to prove (b) using the result from (a)i and the manifold chain rule in an appropriate way.]

