Statistical Learning for Text Data Analytics Sequence Labeling and Structured Output Learning: HMM

Yangqiu Song

Hong Kong University of Science and Technology vgsong@cse.ust.hk

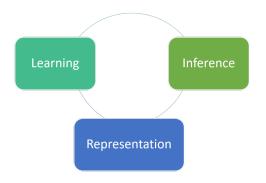
Spring 2018

*Contents are based on materials created by Vivek Srikumar, Dan Roth, Xiaojin (Jerry) Zhu, Chris Manning

Reference Content

- Dan Roth. CS546: Machine Learning and Natural Language . http://l2r.cs.uiuc.edu/~danr/Teaching/CS546-16/
- Vivek Srikumar. CS 6355 Structured Prediction. https: //svivek.com/teaching/structured-prediction/spring2018/
- Xiaojin (Jerry) Zhu. CS 769: Advanced Natural Language Processing. http://pages.cs.wisc.edu/~jerryzhu/cs769.html
- Chris Manning. CS 224N/Ling 237. Natural Language Processing. https://web.stanford.edu/class/cs224n/

Course Topics



- Representation: language models, word embeddings, topic models
- Learning: supervised learning, semi-supervised learning, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1

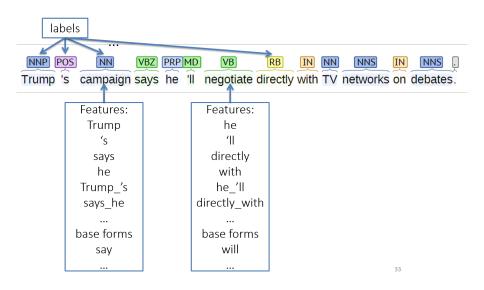
Overview

- Hidden Markov Models
 - Representation
 - Learning
 - Inference

Sequences

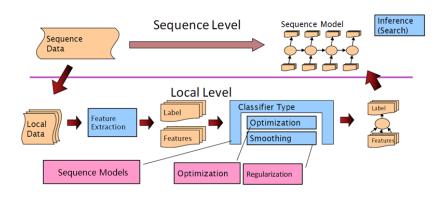
- Sequences of states
 - Text is a sequence of words or even letters
- If there are K unique states, the set of unique state sequences is infinite
- Our goal (for now): Define probability distributions over sequences
- If $x_1, x_2, ..., x_n$ is a sequence that has n tokens, we want to be able to define $P(x_1, x_2, ..., x_n)$
 - We have seen a lot of models for this in language models
 - ullet N-gram language model makes (n-1)th-order Markov assumption

Classification Problem



The General Framework of Training and Testing

Analogous to classification



Label and Feature Dependencies

- Current label may dependent on the previous one
 - Fed in "The Fed" is a Noun because it follows a Determiner
 - Fed in "I fed the.." is a Verb because it follows a Pronoun
- Sometimes more difficult: "I/PN can/MD can/VB a/DT can/NN."
- Two kinds of information incorporated in learning:
 - Some tag sequences are more likely than others. For instance, DT JJ NN is quite common, while DT JJ VBP is unlikely. ("a new book")
 - A word may have multiple possible POS, but some are more likely than others, e.g., "flour" is more often a noun than a verb
- The question is:
 - Given a word sequence

$$\mathbf{x}_{1:N} \doteq \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N,$$

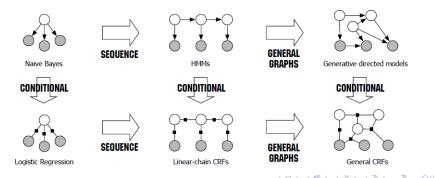
how do we compute the most likely POS sequence

$$y_{1:N} \doteq y_1, y_2, \dots, y_N$$

One method is to use a Hidden Markov Model

Classifiers Feasible for Sequence Labeling

- Generative
 - Naive Bayes
 - Hidden Markov model (HMM)
- Discriminative models
 - Maximum entropy, logistic regression
 - Maximum Entropy Markov Model (MMEM)
 - Conditional random field (CRF)

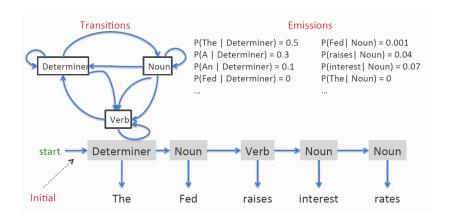


Hidden Markov Model

- Discrete Markov Model
 - States follow a Markov chain
 - Each state is an observation
- Hidden Markov Model
 - States follow a Markov chain
 - States are not observed
 - Each state stochastically emits an observation

A Toy Part-of-Speech Example

Sentence "The Fed raises interest rates"



Joint Model over States and Observations

- Given a word sequence $\mathbf{x}_{1:N}$, how do we compute the most likely POS sequence $y_{1:N}$? We denote:
 - Number of states (types, labels) = K
 - Number of observations (features) = d
 - $\pi = (\pi_1, \dots, \pi_K)^\top$: Initial probability over states (K dimensional vector)
 - $\mathbf{A} \in \mathbb{R}^{K \times K}$: Transition probabilities
 - $A_{ij} = P(y_n = j | y_{n-1} = i)$
 - This is a first-order Markov assumption on the states
 - $\Phi \in \mathbb{R}^{K \times d} = (\phi_1, \dots, \phi_K)^{\top}$: Emission probabilities
 - \bullet For texts $\phi_k = (\phi_k^{(1)}, \dots, \phi_k^{(d)})^\top$ can be a multinomial distribution
- The parameters of an HMM are $\Theta = \{ \boldsymbol{\pi}, \boldsymbol{\mathsf{A}}, \boldsymbol{\mathsf{\Phi}} \}$
- This is a generative model. We can run an HMM for N steps, and produce $x_{1:N}, y_{1:N}$
- The joint probability is

$$P(\mathbf{x}_{1:N}, y_{1:N}|\Theta) = P(y_1|\boldsymbol{\pi})P(\mathbf{x}_1|y_1, \boldsymbol{\Phi}) \prod_{n=1}^{N} P(y_n|y_{n-1}, \boldsymbol{A})P(\mathbf{x}_n|y_n, \boldsymbol{\Phi})$$

Three Questions for HMMs (Rabiner (1990))

- Given an observation sequence, $\mathbf{x}_{1:N}$ and a model $\Theta = \{\pi, \mathbf{A}, \mathbf{\Phi}\}$, how to efficiently calculate the probability of the observation $P(\mathbf{x}_{1:N}|\Theta)$?
- Given an observation sequence, $\mathbf{x}_{1:N}$ and a model $\Theta = \{\pi, \mathbf{A}, \mathbf{\Phi}\}$, how to efficiently calculate the most probable state sequence $y_{1:N}$?
- How do we adjust the model parameters $\Theta = \{\pi, \mathbf{A}, \mathbf{\Phi}\}$ to maximize $P(\mathbf{x}_{1:N}|\Theta)$?

Mapping to Our Problems

- Representation
 - Hidden states follows first-order Markov chain
 - Features are modeled with a multinomial emission distribution
 - We can evaluate $P(\mathbf{x}_{1:N}, y_{1:N}|\Theta)$ of an observation sequence
- Learning
 - Finding parameters $\Theta = \{ \boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{\Phi} \}$
 - Supervised case: trivial parameter estimation
 - Unsupervised/semi-supervised case: EM algorithm (known as Baum-Welch algorithm)
 - EM algorithm involves the so-called forward backward (or in general sum-product) algorithm
- Inference (or decoding problem)
 - Assign a label to a sequence, corresponding to arg $\max_{y_{1:N}} = P(y_{1:N}|x_{1:N},\Theta)$
 - Finding the most likely state sequence to explain the observation sequence
 - It can be exactly solved by Viterbi algorithm (or in general max-product)
 - We can also use greedy search or beam search to have approximate solutions

Overview

- Hidden Markov Models
 - Representation
 - Learning
 - Inference

Learning: The Trivial Case

- \bullet We can find Θ by maximzing the likelihood of observed data
- When $y_{1:N}$ is observed ($\mathbf{x}_{1:N}$ is also observed), which is the supervised learning case, MLE boils down to the frequency estimate
 - A_{ij} is the fraction of times $y_{n-1} = i$ followed by $y_n = j$
 - $\phi_k = P(\mathbf{x}|y=k)$ corresponds to the fraction of times \mathbf{x} is produced under state k
 - π is the fraction of times each state being the first state of a sequence (assuming we have multiple training sequences)
- This is done very similar to naive Bayes classifier

Priors and Smoothing

- Maximum likelihood estimation works best with lots of annotated data
 - Never the case
- Priors inject information about the probability distributions
 - Dirichlet priors for multinomial distributions
- Effectively additive smoothing
 - Add small constants to the count

Learning: $y_{1:N}$ is Unobserved

For unsupervised learning:

 The MLE will maximize (up to a local optimum, see below) the likelihood of observed data

$$P(\mathbf{x}_{1:N}|\Theta) = \sum_{y_{1:N}} P(\mathbf{x}_{1:N}, y_{1:N}|\Theta)$$

where the summation is over all possible label sequences of length N

- ullet This is an exponential sum with K^N label sequences
- HMM training uses a combination of dynamic programming and EM to handle this issue

Lower Bound for EM Algorithm

 Note the log likelihood involves summing over hidden variables, which suggests we can apply Jensens inequality to lower bound

$$\begin{array}{ll} P(\mathbf{x}_{1:N}|\Theta) &= \log \sum_{y_{1:N}} P(\mathbf{x}_{1:N}, y_{1:N}|\Theta) \\ &= \log \sum_{y_{1:N}} P(y_{1:N}|\mathbf{x}_{1:N}, \Theta^{old}) \frac{P(\mathbf{x}_{1:N}, y_{1:N}|\Theta)}{P(y_{1:N}|\mathbf{x}_{1:N}, \Theta^{old})} \\ &\geq \sum_{y_{1:N}} P(y_{1:N}|\mathbf{x}_{1:N}, \Theta^{old}) \log \frac{P(\mathbf{x}_{1:N}, y_{1:N}|\Theta)}{P(y_{1:N}|\mathbf{x}_{1:N}, \Theta^{old})} \end{array}$$

- In E-step, we find the posterior $P(y_{1:N}|\mathbf{x}_{1:N},\Theta^{old})$
- In M-step, we maximize the above lower bound (taking the parts that depends on)

$$Q(\Theta, \Theta^{old}) = \sum_{y_{1:N}} P(y_{1:N} | \mathbf{x}_{1:N}, \Theta^{old}) \log P(\mathbf{x}_{1:N}, y_{1:N} | \Theta)$$

EM Algorithm

$$Q(\Theta, \Theta^{old}) = \sum_{y_{1:N}} P(y_{1:N}|\mathbf{x}_{1:N}, \Theta^{old}) \log P(\mathbf{x}_{1:N}, y_{1:N}|\Theta)$$

We introduce two sets of variables (E-Step):

$$\gamma_n(k) = P(y_n = k | \mathbf{x}_{1:N}, \Theta^{old})$$

$$\xi_n(jk) = P(y_{n-1} = j, y_n = k | \mathbf{x}_{1:N}, \Theta^{old})$$

to denote the node marginals and edge marginals (conditioned on input $\mathbf{x}_{1:N}$, under the old parameters)

Given

$$P(\mathbf{x}_{1:N}, y_{1:N}|\Theta) = P(y_1|\pi)P(\mathbf{x}_1|y_1, \mathbf{\Phi}) \prod_{n=2}^{N} P(y_n|y_{n-1}, \mathbf{A})P(\mathbf{x}_n|y_n, \mathbf{\Phi})$$

• The Q function can be written as

$$Q(\Theta, \Theta^{old}) = \sum_{k=1}^{K} \gamma_{1}(k) \log \pi_{k} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n}(k) \log P(\mathbf{x}_{n}|y_{n}, \phi_{k}) + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi_{n}(jk) \log A_{jk}$$

M-step

 The M-step is a constrained optimization problem since the parameters need to be normalized. As before, one can introduce Lagrange multipliers and set the gradient of the Lagrangian to zero to arrive at

$$\pi_k \propto \gamma_1(k)$$

$$A_{jk} \propto \sum_{n=2}^{N} \xi_n(jk)$$

where A_{ik} is normalized over k

 $oldsymbol{\phi}_k$ is maximized depending on the particular form of the distribution. If it is multinomial, we have

$$\phi_k \propto \sum_n \gamma_n(k) \mathbf{x}_n$$

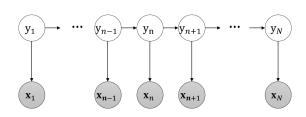
E-Step

In the E-step,

- We need to compute $\gamma_n(k)$ and $\xi_n(jk)$
- Particularly we have

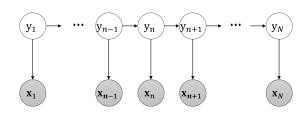
- We use an recursive way to compute forward $\alpha(y_n)$ and backward $\beta(y_n)$
- This is consistent with the "sum-product" algorithm

Forward Recursion $\alpha(y_n)$



$$\alpha(y_n) = P(\mathbf{x}_{1:n}, y_n) = P(y_n)P(\mathbf{x}_n|y_n)P(\mathbf{x}_{1:n-1}|y_n) = P(\mathbf{x}_n|y_n)P(\mathbf{x}_{1:n-1}, y_n) = P(\mathbf{x}_n|y_n)\sum_{y_{n-1}} P(\mathbf{x}_{1:n-1}, y_{n-1}, y_n) = P(\mathbf{x}_n|y_n)\sum_{y_{n-1}} P(\mathbf{x}_{1:n-1}, y_n|y_{n-1})P(y_{n-1}) = P(\mathbf{x}_n|y_n)\sum_{y_{n-1}} P(\mathbf{x}_{1:n-1}|y_{n-1})P(y_n|y_{n-1})P(y_{n-1}) = P(\mathbf{x}_n|y_n)\sum_{y_{n-1}} P(\mathbf{x}_{1:n-1}, y_{n-1})P(y_n|y_{n-1}) = P(\mathbf{x}_n|y_n)\sum_{y_{n-1}} \alpha(y_{n-1})P(y_n|y_{n-1})$$

Backward Recursion $\beta(y_n)$



$$\beta(y_n) = P(\mathbf{x}_{n+1:N}|y_n)$$

$$= \sum_{y_{n+1}} P(\mathbf{x}_{n+1:N}, y_{n+1}|y_n)$$

$$= \sum_{y_{n+1}} P(\mathbf{x}_{n+1:N}|y_{n+1}, y_n) P(y_{n+1}|y_n)$$

$$= \sum_{y_{n+1}} P(\mathbf{x}_{n+1:N}|y_{n+1}) P(y_{n+1}|y_n)$$

$$= \sum_{y_{n+1}} P(\mathbf{x}_{n+2:N}|y_{n+1}) P(\mathbf{x}_{n+1}|y_{n+1}) P(y_{n+1}|y_n)$$

$$= \sum_{y_{n+1}} \beta(y_{n+1}) P(\mathbf{x}_{n+1}|y_{n+1}) P(y_{n+1}|y_n)$$

E-Step (Cont'd)

• After computing forward recursion $\alpha(y_n)$ and backward recursion $\beta(y_n)$ we have

$$\gamma_n(k) = \frac{\alpha(y_n = k)\beta(y_n = k)}{P(\mathbf{x}_{1:N})}$$

Similarly, we have

$$\xi_n(jk) = \frac{\alpha(y_{n-1} = j)P(y_n = k|y_{n-1} = j)P(\mathbf{x}_n|y_n = k)\beta(y_n = k)}{P(\mathbf{x}_{1:N})}$$

Overview

- Hidden Markov Models
 - Representation
 - Learning
 - Inference

Most Likely State Sequence

- Input:
 - A hidden Markov model $\Theta = \{ \boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{\Phi} \}$
 - An observation sequence x_{1:N}
- Output: A state sequence y_{1:N} that corresponds to

$$\arg\max_{y_{1:N}} P(y_{1:N}|\mathbf{x}_{1:N},\Theta)$$

- This is maxinum a posteriori inference (MAP inference)
- Computationally a combinatorial optimization problem

MAP Inference

- We want arg $\max_{y_{1:N}} P(y_{1:N}|\mathbf{x}_{1:N},\Theta)$
- Note that $P(y_{1:N}|\mathbf{x}_{1:N},\Theta) \propto P(y_{1:N},\mathbf{x}_{1:N}|\Theta)$
 - And we don't care about $P(\mathbf{x}_{1:N})$ since we are maximizing over $y_{1:N}$
- So

$$\arg\max_{y_{1:N}} P(y_{1:N}|\mathbf{x}_{1:N},\Theta) = \arg\max_{y_{1:N}} P(y_{1:N},\mathbf{x}_{1:N}|\Theta)$$

We have defined

$$P(\mathbf{x}_{1:N}, y_{1:N}|\Theta) = P(y_1|\pi)P(\mathbf{x}_1|y_1, \mathbf{\Phi}) \prod_{n=2}^{N} P(y_n|y_{n-1}, \mathbf{A})P(\mathbf{x}_n|y_n, \mathbf{\Phi})$$

We omit the parameters for the ease of derivation

$$P(\mathbf{x}_{1:N}, y_{1:N}) = P(y_1)P(\mathbf{x}_1|y_1) \prod_{n=2}^{N} P(y_n|y_{n-1})P(\mathbf{x}_n|y_n)$$

How Many Possible Sequences?

The	Fed	raises	interest	rates		
List of allowed tags for each word						
Determiner	Verb Noun	Verb Noun	Verb Noun	Verb Noun		
	Noun	Noun	Noun	Noun		
1	2	2	2	2		

• In this simple case, we have 16 candidate sequences

$$(1 \times 2 \times 2 \times 2 \times 2)$$

How Many Possible Sequences?

• Output: one state per observation $y_n = s_k$

Observations	x_{1}	X ₂		\mathbf{x}_{n}		
	List of allowed states for each observation					
	s_1	s_1		s_1		
	s_2	s ₂		s_2		
	s_3	s ₂		s ₃		
	s_K	s_K		\boldsymbol{s}_{K}		

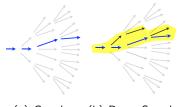
• We have K^n possible sequences to consider in arg $\max_{y_1, y_1} P(y_{1:N}, \mathbf{x}_{1:N} | \Theta)$

Naive Approaches

- Try out every sequences
 - Score the sequence $y_{1:N}$ using $P(y_{1:N}, \mathbf{x}_{1:N}|\Theta)$
 - Return the highest scoring one
 - Correct but slow $O(K^N)$
- Greedy search
 - Construct the output left to right
 - For each n, elect the best y_n using y_{n-1} and \mathbf{x}_n
 - Incorrect but fast, O(NK)

Beam Search

- Beam inference
 - At each position keep the top k complete sequences
 - Extend each sequence in each local way
 - The extensions compete for the k slots at the next position



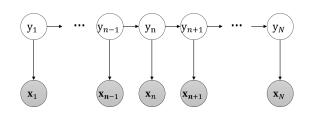
- (a) Greedy
- (b) Beam Search

- Advantages
 - Fast; beam sizes of 3-5 are almost as good as exact inference in many cases
 - Easy to implement (no dynamic programming required)
- Disadvantage
 - Inexact: the globally best sequence can fall off the beam

Optimal Solution: General Idea

- Dynamic programming
 - The best solution for the full problem relies on the best solution to the sub-problem
 - Memorize partial computation
- Examples
 - Viterbi algorithm
 - Dijkstra's shortest path algorithm
 - MDP value iteration
 - ...

Deriving the Recursion



$$\max_{y_{1:N}} P(\mathbf{x}_{1:N}, y_{1:N}) = \max_{y_{1:N}} P(y_1) P(\mathbf{x}_1|y_1) \prod_{n=2}^{N} P(y_n|y_{n-1}) P(\mathbf{x}_n|y_n)$$

We reorganize it as

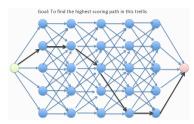
$$\max_{y_{1:N}} P(\mathbf{x}_N|y_N) P(y_N|y_{N-1}) \cdot \ldots \cdot P(\mathbf{x}_2|y_2) P(y_2|y_1) \cdot P(\mathbf{x}_1|y_1) P(y_1)$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● りゅぐ

Deriving the Recursion

```
 \max_{y_{1:N}} P(\mathbf{x}_{N}|y_{N}) P(y_{N}|y_{N-1}) \cdot \dots \cdot P(\mathbf{x}_{2}|y_{2}) P(y_{2}|y_{1}) \cdot P(\mathbf{x}_{1}|y_{1}) P(y_{1}) 
 = \max_{y_{2:N}} P(\mathbf{x}_{N}|y_{N}) P(y_{N}|y_{N-1}) \cdot \dots \cdot \max_{y_{1}} P(\mathbf{x}_{2}|y_{2}) P(y_{2}|y_{1}) \cdot P(\mathbf{x}_{1}|y_{1}) P(y_{1}) 
 = \max_{y_{2:N}} P(\mathbf{x}_{N}|y_{N}) P(y_{N}|y_{N-1}) \cdot \dots \cdot \max_{y_{1}} P(\mathbf{x}_{2}|y_{2}) P(y_{2}|y_{1}) \cdot score_{1}(y_{1}) 
 = \max_{y_{3:N}} P(\mathbf{x}_{N}|y_{N}) P(y_{N}|y_{N-1}) \cdot \dots \cdot \max_{y_{2}} P(\mathbf{x}_{3}|y_{3}) P(y_{3}|y_{2}) 
 \cdot \max_{y_{1}} P(\mathbf{x}_{2}|y_{2}) P(y_{2}|y_{1}) \cdot score_{1}(y_{1}) 
 = \max_{y_{3:N}} P(\mathbf{x}_{N}|y_{N}) P(y_{N}|y_{N-1}) \cdot \dots \cdot \max_{y_{2}} P(\mathbf{x}_{3}|y_{3}) P(y_{3}|y_{2}) \cdot score_{2}(y_{2}) 
 = \dots 
 = \max_{y_{N}} score_{N}(y_{N})
```

where we have $score_n(y_n) = \max_{y_{n-1}} P(y_n|y_{n-1})P(\mathbf{x}_n|y_n)score_{n-1}(y_{n-1})$



Complexity of Inference

- Complexity parameters
 - Input sequence length: N
 - Number of states: K
- Memory
 - Storing the table: NK (scores for all states at each position)
- Runtime
 - At each step, go over pairs of states
 - O(NK²)

Summary of Viterbi Inference

- Viterbi inference
 - Dynamic programming or memoization
 - Requires small window of state influence (e.g., past two states are relevant)
- Advantage
 - Exact: the global best sequence is returned
- Disadvantage
 - Harder to implement long-distance state-state interactions (but beam inference tends not to allow long-distance resurrection of sequences anyway)

Summary

- Predicting sequences
 - As many output states as observations
- Markov assumption helps decompose the score
- Several algorithmic questions
 - Most likely state
 - Learning parameters: supervised, unsupervised (posterior, sum-product algorithm)
 - Probability of an observation sequence: sum over all assignments of states; replace max with sum in Viterbi
 - Inference: Viterbi (or max-product algorithm)

Next...

- Conditional Models and Local Classifiers
- Global models
 - Conditional Random Fields
 - Structured Perceptron for sequences

References

Rabiner, L. R. (1990). Readings in speech recognition. chapter A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, pages 267–296.