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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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Overview

1 Language Models: Recap

2 Topic Models

3 Probabilistic Latent Semantic Analysis (PLSA)

4 Latent Dirichlet Allocation (LDA)
Motivation: Bayesian Modeling
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Naive Bayes Classifier: A Generative View

Both ym and
xm = (x1

m, . . . , x
d
m)T

are observed variables;
π and θk are
parameters

Naive Bayes from Class Conditional Unigram Model

For m = 1, . . . ,M

Choose ym ∼ Multinomial(ym|1,π)

Choose Nm =
∑d

j x
j
m ∼ Poisson(ξ)

For n = 1, . . . ,Nm

Choose v ∼ Multinomial(v |1,θ∗|ym ) =∏d
j=1(θj∗|ym )v=j
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Compare Naive Bayes and Mixture Model

In naive Bayes, both ym and xm = (x1
m, . . . , x

d
m)T are observed variables; π

and θk are parameters

Figure: Native Bayes Figure: Mixture Model

However, in clustering problems, ym is not observed (labeled before feeding
into machine learning algorithm)
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Probabilistic Latent Semantic Analysis (PLSA)

PLSA assumes that each document d (with word vector w) is
generated from all topics, with documentspecific topic weights.

Choose a zm,i = k from topic distribution π

Choose a document from
dm ∼ Multinomial(dm|1,θk)

Choose a word wi from
wi ∼ Multinomial(wi |1,φk)

Add one count of word wi to document dm

Repeat until we generate the document-word
matrix

Under this process, the probability of picking the corpus is:

P(D,W) =
∏M

m=1

∏Nm
i=1

∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

=
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )
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A Matrix Factorization View

P(D,W) =
∏M

m=1

∏Nm
i=1

∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

=
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )
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Maximize Log Likelihood

Log likelihood:

P(D,W) =
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )

To reduce the notation complexity, we denote:

logP(D,W) =
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
We denote the parameters as
Θ = {π,φk ,θk , k = 1, . . . ,K} = {P(z),P(d |z),P(w |z)}
Note here z is a hidden variable, and note that the sum is inside the
log

We can apply EM algorithm to maximize the likelihood
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Lower Bound and E-Step

Remember Jensens inequality

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

We first compute the lower bound of the log likelihood:

logP(D,W)

=
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
=

∑M
d=1

∑V
w=1 cd(w) log

(∑K
k=1 qz,d ,w (Θ)P(z)P(d |z)P(w |z)

qz,d,w (Θ)

)
≥

∑M
d=1

∑V
w=1 cd(w)

∑K
k=1 qz,d ,w (Θ)

(
log P(z)P(d |z)P(w |z)

qz,d,w (Θ)

)
Note Jensen’s inequality involves computing
qz,d ,w (Θ) = P(z |d ,w ,Θt), which computes the probability of topics
separately for each cell, under the current parameters Θt

This is exactly the E-step:

P(z |d ,w ,Θt) ∝ P(z |Θt)P(d |z ,Θt)P(w |z ,Θt)
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M-Step

logP(D,W)

=
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
=

∑M
d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z |d ,w ,Θt)P(z)P(d |z)P(w |z)

P(z|d ,w ,Θt)

)
=

∑M
d=1

∑V
w=1 cd(w)

∑K
k=1 P(z |d ,w ,Θt)

(
log P(z)P(d |z)P(w |z)

P(z|d ,w ,Θt)

)
Maximizing the right of the above inequality by setting the gradient
to zero amounts to the M-step, which gives

P(z) ∝
∑

d

∑
w cd(w)P(z |d ,w ,Θt)

P(d |z) ∝
∑

w cd(w)P(z |d ,w ,Θt)
P(w |z) ∝

∑
d cd(w)P(z |d ,w ,Θt)
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Use of PLSA

Once the model is trained, we can look at it in the following way
P(w |z) are the topics. Each topic is defined by a word multinomial.
Often people find that the topics seem to have distinct semantic
meanings.
From P(d |z) and P(z), we can compute P(z |d) ∝ p(d |z)p(z). P(z |d)
is the topic wights for document d .

One drawback of PLSA is that it is transductive in nature. That is,
there is no easy way to handle a new document that is not already in
the collection

This motivates us to introduce a Bayesian modeling of topic models
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Recall Unigram Language Modeling

Data corpus: a collection of words, W = {w1,w2, . . . ,wN}
Model: multinomial distribution P(W|θ) with parameters
θ = (θ1, . . . , θV ), where

θi = P(vi )
vi ∈ V
V is the vocabulary
|V| = V

Count of words in corpus u = (u1, . . . , uV ) where ui = c(vi ) is the
count of vi shown in W,

∑
i ui = N

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 15 / 35



Unigram Modeling

“Bag of words” assumes the words are sampled from a multinomial
distribution u ∼ Multi(θ)

P(u|θ) =

(
N
u

) V∏
i=1

θuii , Mult(u|θ,N),where

(
N
u

)
=

N!∏
i ui !

If we focus on a single trial, we have:

P(w |θ) = P(w = vi ) =
V∏
i=1

θ
δw=vi
i , Mult(w |θ)

Maximum likelihood estimator: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
N∏
j=1

P(wj |θ) =
V∏
i=1

P(vi )
ui =

V∏
i=1

θui
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Maximum Likelihood Estimation: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
∏V

i θ
ui
i

(log likelihood)

⇒ logP(W|θ) =
∑V

i ui log θi

(Lagrange multiplier to make θ be a distribution)

⇒ L(W,θ) = logP(W|θ) =
∑V

i ui log θi + λ(
∑

i θi − 1)

(Set partial derivatives to zero)

⇒ ∂L
∂θi

= ui
θi

+ λ

Since
∑V

i θi = 1, we have λ = −
∑V

i ui

⇒ θi =
ui∑V
i ui

=
ui
N

(Maximum Likelihood Estimation ,MLE )
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Generalization: Add-K smoothing

Problem: Add-one moves too much probability mass from seen to unseen
events!

Variant of Add-One smoothing

Add a constant k to the counts of each word
For any k > 0 (typically, k < 1), a unigram model is

⇒ θi =
ui + k∑V
i ui + kV

=
ui + k

N + kV

If k = 1

“Add one” Laplace smoothing

This is still too simplistic to work well.

Any explanation?
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Bayesian Interpretation

Conjugate distribution

Adding a conjugate prior to a likelihood will result in a posterior in the
same distribution family as the prior, then the prior and the likelihood
are called conjugate distributions
Conjugate distribution makes us easier to formulate Bayesian belief and
inference the model
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Bayesian Interpretation

The conjugate prior of a multinomial is Dirichlet distribution:

P(θ|α) = Dir(θ|α) , Γ(
∑V

i=1 αi )∏V
i=1 Γ(αi )

∏V
i=1 θ

αi−1
i , 1

∆(α)

∏V
i=1 θ

αi−1
i

The “Dirichlet Delta function” ∆(α) is introduced for convenience
α = (α1, α2, . . . , αV )> ∈ RV

The Gamma function satisfies Γ(x + 1) = xΓ(x)

For integer variable, Gamma function is Γ(x) = (x − 1)!
For real numbers, it is Γ(x) =

∫∞
0

tx−1e−tdt

The Dirichlet distribution can be seen as the “distribution of a
distribution”

We can sample a multinomial distribution from Dirichlet distribution,
satisfied the constraint

∑
i θi = 1
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Beta Distribution

Called Beta distribution when there are two choices of variable values
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Bayesian Estimation

Remember Maximum likelihood estimator: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
N∏
j=1

P(wj |θ) =
V∏
i=1

P(vi )
ui =

V∏
i=1

θui (θi =
ui∑V
i ui

=
ui
N

)

The posterior of the parameters θ based on the prior and the
observation of N words:

P(θ|W,α) = P(W|θ)P(θ|α)
P(W|α)

=
∏N

i=1 P(wi |θ)P(θ|α)∫
θ

∏N
i=1 P(wi |θ)P(θ|α)dθ

=
∏N

i=1 P(wi |θ)P(θ|α)
Z

= 1
Z

∏V
i=1 θ

ui
i

1
∆(α)

∏V
i=1 θ

αi−1
i

= 1
∆(α+u)

∏V
i=1 θ

αi+ui−1
i = Dir(θ|α + u)

We have MAP (maximum a posterior estimation) estimate as
θi = ui+αi−1∑V

i ui+V (αi−1)
(αi = 1 equals to MLE)
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Graphical Representation of Two Versions

Figure: Unigram Language Model

P(W|θ) =
∏N

j=1 P(wj |θ)
Figure: Bayesian Esitmation

P(θ|W,α) = P(W|θ)P(θ|α)
P(W|α)
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Alternative Way for PLSA to Generate Texts

P(D,W) =
∏M

m=1

∏Nm
i=1

∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

=
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )

P(D,W) =
∏M

m=1

∏V
i=1 P(dm)

(∑K
k=1 P(zm,i = k |θm)P(wi |φk)

)cdm (wi )
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Comparison of Mixture Models and PLSA

P(D,W) =
∏M

m=1

∏V
i=1 P(dm)

(∑K
k=1 P(zm,i = k |θm)P(wi |φk)

)cdm (wi )
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Comparison of Mixture Models and PLSA

Figure: Mixture Models (with notation
change) Figure: PLSA
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Bayesian Modeling: Language Models

Figure: Unigram Language Model

Figure: Bayesian Esitmation
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Bayesian Modeling: Mixture Models

Figure: Unigram Language Model

Figure: Bayesian Esitmation
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Bayesian Modeling: Topic Models

Figure: PLSA

Figure: LDA
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Generative Process of Latent Dirichlet Allocation

Figure: LDA

For all clusters/components k ∈ [1,K ]:

Choose mixture components φk ∼ Dir(φ|β)

For all documents m ∈ [1,M]:

Choose Nm ∼ Poisson(ξ)
Choose mixture probability θm ∼ Dir(θ|α)
For all words n ∈ [1,Nm] in document dm:

Choose a component index
zm,n ∼ Mult(z |θm)
Choose a word wm,n ∼ Mult(w |φzm,n

)
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Bayes’ rule

P(Hypothesis|Data) =
P(Data|Hypothesis)P(Hypothesis)

P(Data)

Bayesian’s use Bayes’ Rule to update beliefs in hypotheses in response
to data

P(Hypothesis|Data) is the posterior distribution

P(Hypothesis) is the prior distribution

P(Data|Hypothesis) is the likelihood, and

P(Data) is a normalizing constant sometimes called the evidence
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Computing the Normalizing Constant

P(Data) =
∑

Hypothesis′∈H

P(Data|Hypothesis)P(Hypothesis)

If set of hypotheses H is small, can calculate P(Data) by enumeration

But often these sums are intractable
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“Being Bayesian”

A summary of the Bayesian philosophy in NLP:

Because we have finite data, we should be uncertain about every
estimated model parameter
Bayes’ rule gives us a way to manage that uncertainty, if we can define
a prior distribution over model parameters
Inference is a “simple matter” of estimating posterior distributions

But exact inference is almost never tractable, so we need
approximations
There are many of these, and they tend to be expensive
Some of them look like EM, some don’t
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