# Statistical Learning for Text Data Analytics Text Clustering and Topic Models 

Yangqiu Song<br>Hong Kong University of Science and Technology<br>yqsong@cse.ust.hk

Spring 2018
*Contents are based on materials created by Noah Smith, Xiaojin (Jerry) Zhu, Chengxiang Zhai

## Reference Content

- Noah Smith. CSE 517: Natural Language Processing https://courses.cs.washington.edu/courses/cse517/16wi/
- Xiaojin (Jerry) Zhu. CS 769: Advanced Natural Language Processing. http://pages.cs.wisc.edu/~jerryzhu/cs769.html
- Chengxiang Zhai. CS598CXZ Advanced Topics in Information Retrieval. http://times.cs.uiuc.edu/course/598f16/


## Course Topics



- Representation: language models, word embeddings, topic models
- Learning: supervised learning, semi-supervised learning, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1

## Overview

(1) EM Algorithm
(2) Language Models: Recap
(3) Topic Models
(4) Probabilistic Latent Semantic Analysis (PLSA)

## Naive Bayes and Mixture Model

In naive Bayes, both $y_{m}$ and $\mathbf{x}_{m}=\left(x_{m}^{1}, \ldots, x_{m}^{V}\right)^{T}$ are observed variables; $\boldsymbol{\pi}$ and $\boldsymbol{\theta}_{k}$ are parameters


Figure: Native Bayes


Figure: Mixture Model

However, in clustering problems, $y_{m}$ is not observed (labeled before feeding into machine learning algorithm)

## Expectation Maximization (EM) Algorithm

- EM might look like a heuristic method. However, it is not.
- EM is guaranteed to find a local optimum of data log likelihood
- Recall if we have complete data set $\left\{\mathbf{x}_{m}, y_{m}\right\}_{m=1}^{M}$ and denote parameter set as $\Theta=\left\{\boldsymbol{\pi},\left\{\boldsymbol{\theta}_{k}\right\}\right\}$, the likelihood estimation of native Bayes is

$$
\mathcal{J}_{N B}(\Theta)=\log \prod_{m=1}^{M} P_{\boldsymbol{\pi},\left\{\boldsymbol{\theta}_{k}\right\}}\left(\mathbf{x}_{m}, y_{m}\right)=\log P\left(\left\{\mathbf{x}_{m}, y_{m}\right\}_{m=1}^{M} \mid \Theta\right)
$$

- However, now $\left\{y_{m}\right\}_{m=1}^{M}$ are not observed (labeled), so we treat them as hidden variables
- We instead maximize the marginal log likelihood:

$$
\mathcal{J}(\Theta)=\log P\left(\left\{\mathbf{x}_{m}\right\}_{m=1}^{M} \mid \Theta\right)
$$

## EM Algorithm: General Idea



## Lower Bound $Q\left(\Theta, \Theta^{t}\right)$ (Cont'd)

- The lower bound is obtained via Jensens inequality (concavity of log function)

$$
\log \sum_{i} P_{i} f_{i}(x) \geq \sum_{i} P_{i} \log f_{i}(x)
$$

which holds if the $p_{i}$ 's form a probability distribution

- Then the lower bound can be derived:

$$
\begin{aligned}
\mathcal{J}\left(\Theta^{t}\right) & =\sum_{m=1}^{M} \log \sum_{y=1}^{K} P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right) \\
& =\sum_{m=1}^{M} \log \sum_{y=1}^{K} q_{\mathrm{x}_{m}, y}(\Theta) \frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{q_{x_{m}, y}(\Theta)} \\
& \geq \sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathrm{x}_{m}, y}(\Theta) \log \frac{P\left(\mathrm{x}_{m}, y \mid \Theta^{t}\right)}{q_{\mathrm{x}_{m}, y}(\Theta)} \\
& \doteq Q\left(\Theta, \Theta^{t}\right)
\end{aligned}
$$

where $\sum_{y=1}^{K} q_{\mathrm{x}_{m}, y}(\Theta)=1$ is some distribution

## E-step

$$
\sum_{m=1}^{M} \log \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y}(\Theta) \frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{q_{\mathbf{x}_{m}, y}(\Theta)} \geq \sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y}(\Theta) \log \frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{q_{\mathbf{x}_{m}, y}(\Theta)}
$$

- To make the bound tight for a particular value of $\Theta$, we need for the step involving Jensens inequality in our derivation above to hold with equality
- For this to be true, we know it is sufficient that the expectation be taken over a constant-valued random variable $\frac{P\left(\mathrm{x}_{m}, y \mid \Theta^{t}\right)}{q_{x_{m}, y}(\Theta)}=c$
- This is easily done by choosing $q_{\mathbf{x}_{m}, y}(\Theta) \propto P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)$
- Since $\sum_{y=1}^{K} q_{x_{m}, y}(\Theta)=1$, we have (considered as E-step)

$$
q_{\mathbf{x}_{m}, y}(\Theta)=\frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{\sum_{y=1}^{K} P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}=P\left(y \mid \mathbf{x}_{m}, \Theta^{t}\right)
$$

- The equation holds in the inequality iff $q_{\mathbf{x}_{m}, y}=P\left(y \mid \mathbf{x}_{m}, \Theta^{t}\right)$


## M-step

- In M-step, we maximize the lower bound

$$
\begin{aligned}
Q\left(\Theta^{t}, \Theta\right) & =\sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y} \log \frac{P\left(\mathbf{x}_{m}, y \mid \Theta\right)}{q_{x_{m}, y}} \\
& =\sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y} \log \frac{P\left(y_{m} \mid \boldsymbol{\pi}\right) P\left(\mathbf{x}_{m} \mid y_{m}, \boldsymbol{\theta}_{* \mid y_{m}}\right)}{q_{\mathrm{x}_{m}, y}}
\end{aligned}
$$

- Now we can set the gradient of $Q$ w.r.t. $\boldsymbol{\pi}$ and $\boldsymbol{\theta}_{k}$ 's to zero and obtain a closed form solution

$$
\begin{aligned}
& \pi_{k}=\frac{\sum_{m} q_{x_{m}, y}}{M} \\
& \theta_{k}^{j}=\frac{\sum_{m} q_{x_{m}, y} x_{m}^{j}}{\sum_{m} \sum_{j=1}^{d} q_{m}, y x_{m}^{j}}
\end{aligned}
$$

- Compared to naive Bayes:

$$
\begin{aligned}
\pi_{k} & =\frac{\left|\left\{y_{m}=k\right\}\right|}{M} \\
\theta_{k}^{j} & =\frac{\sum_{m, y_{m}=k} x_{m}^{j}}{\sum_{m, y_{m}=k} \sum_{j=1}^{d} x_{m}^{j}}
\end{aligned}
$$

## Convergence of EM Algorithm

- E-step: With $q_{\mathbf{x}_{m}, y}(\Theta)=P\left(y \mid \mathbf{x}_{m}, \Theta^{t}\right)$, the equation holds, which leads

$$
Q\left(\Theta^{t}, \Theta^{t}\right)=\mathcal{J}\left(\Theta^{t}\right)
$$

- M-step: Since $\Theta^{t+1}$ maximizes $Q\left(\Theta^{t}, \Theta\right)$, we have

$$
Q\left(\Theta^{t}, \Theta^{t+1}\right) \geq Q\left(\Theta^{t}, \Theta^{t}\right)=\mathcal{J}\left(\Theta^{t}\right)
$$

- On the other hand, $Q$ is lower bound of $\mathcal{J}$, we have:

$$
\mathcal{J}\left(\Theta^{t+1}\right) \geq Q\left(\Theta^{t}, \Theta^{t+1}\right) \geq Q\left(\Theta^{t}, \Theta^{t}\right)=\mathcal{J}\left(\Theta^{t}\right)
$$

- This shows EM algorithm always increase the objective function (log likelihood)
- By iterating, we arrive at a local maximum of it


## A More General View of EM

- EM is general and applies to joint probability models whenever some random variables are missing
- EM is advantageous when the marginal is difficult to optimize, but the joint is easy
- To be general, consider a joint distribution $P(X, Z \mid \Theta)$, where $X$ is the collection of observed variables, and $Z$ unobserved variables
- The quantity we want to maximize is the marginal log likelihood

$$
\mathcal{J}(\Theta)=\log P(X \mid \Theta)=\log \sum_{Z} P(X, Z \mid \Theta)
$$

which we assume difficult to optimize

## A More General View of EM (Cont'd)

- One can introduce an arbitrary distribution over hidden variables $Q(Z)$

$$
\begin{aligned}
\mathcal{J}(\Theta) & =\log P(X \mid \Theta)=\log \sum_{Z} P(X, Z \mid \Theta) \\
& =\sum_{Z} Q(Z) \log P(X \mid \Theta) \\
& =\sum_{Z} Q(Z) \log \frac{P(X \mid \Theta) Q(Z) P(X, Z \mid \Theta)}{P(X, Z \mid \Theta) Q(Z)} \\
& =\sum_{Z} Q(Z) \log \frac{P(X, Z \mid \Theta)}{Q(Z)}+\sum_{Z} Q(Z) \log \frac{P(X \mid \Theta) Q(Z)}{P(X, Z \mid \Theta)} \\
& =\sum_{Z} Q(Z) \log \frac{P(X, Z \Theta)}{Q(Z)}+\sum_{Z} Q(Z) \log \frac{Q(Z)}{P(Z \mid X, \Theta)} \\
& =F(Q, \Theta)+K L[Q(Z) \| P(Z \mid X, \Theta)]
\end{aligned}
$$

- Note $F(Q, \Theta)$ is the right hand side of Jensen's inequality
- If $K L>0, F(Q, \Theta)$ is a lower bound of $\mathcal{J}(\Theta)$
- First consider the maximization of $F$ on $Q$ with $\Theta^{t}$ fixed
- $F(Q, \Theta)$ is maximized by $Q(Z)=P\left(Z \mid X, \Theta^{t}\right)$ since $\mathcal{J}(\Theta)$ is fixed and KL attends its minimum zero ( E -Step)
- Next consider the maximization of $F$ on $\Theta$ with $Q$ fixed as above
- Note in this case $F(Q, \Theta)=Q\left(\Theta^{t}, \Theta\right)$ (M-Step)


## Illustration of EM



Figure: EM Algorithm

## Illustration of EM



Figure: EM Algorithm

## Illustration of EM



Figure: EM Algorithm

## Variations of EM

- Generalized EM (GEM) finds $\Theta$ that improves, but not necessarily maximizes, $F(Q, \Theta)=Q\left(\Theta, \Theta^{t}\right)$ in the M -step. This is useful when the exact M-step is difficult to carry out. Since this is still coordinate ascent, GEM can find a local optimum.
- Stochastic EM: The E-step is computed with Monte Carlo sampling. This introduces randomness into the optimization, but asymptotically it will converge to a local optimum.
- Variational EM: $Q(Z)$ is restricted to some easy-to-compute subset of distributions, for example the fully factorized distributions $Q(Z)=\prod_{i} Q\left(z_{i}\right)$. In general $P(Z \mid X, \Theta)$, which might be intractable to compute, will not be in this subset. There is no longer guarantee that variational EM will find a local optimum.


## Overview

(1) EM Algorithm
(2) Language Models: Recap
(3) Topic Models
(4) Probabilistic Latent Semantic Analysis (PLSA)

## Paragraphs of Text

- A language model is a probability distribution over $\mathcal{V}^{\dagger}$
- Typically $P$ decomposes into probabilities $P\left(x_{i} \mid \mathbf{h}_{i}\right)$
- We considered n-gram, log-linear, and neural language models, etc.
- Today: probabilistic models that relate a word and its cotext (the linguistic environment of the word)
- This might help us learn to represent words, contexts, or both


## Three Kinds of Cotext

If we consider a word token at a particular position $i$ in text to be the observed value of a random variable $X_{i}$, what other random variables are predictive of/related to $X_{i}$ ?

- The words that occur within a small "window" around $i$ (e.g., $x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2}$, or maybe the sentence containing $\left.i\right) \rightarrow$ distributional semantics
- The document containing $i$ (a moderate-to-large collection of other words) $\rightarrow$ topic models
- A sentence known to be a translation of the one containing $i \rightarrow$ translation models


## Overview

## (1) EM Algorithm

(2) Language Models: Recap
(3) Topic Models

## 4. Probabilistic Latent Semantic Analysis (PLSA)

## Topic Models

- Words are not independent and identically distributed (i.i.d.)!
- Predictable given history: n-gram/Markov models
- Predictable given other words in the document: topic models
- Let $Z=\{1, \ldots, k\}$ be a set of "topics" or "themes" that will help us capture the interdependence of words in a document
- Usually these are not named or characterized in advance; they are just $k$ different values with no a priori meaning


## The Term-Document Matrix

- Let $\mathbf{A} \in \mathbb{R}^{V \times M}$ contain statistics of association between words in $\mathcal{V}$ and $M$ documents. $N$ is the total number of word tokens.
- Comparison of contexts
- Local context (Let's try to keep the kitchen clean.)
context $c$

- Document-level context $\left([\mathbf{A}]_{v, d}=c_{x_{d}}(v)\right)$
- d1: "yes, we have no bananas"
- d2: "say yes for bananas"
- d3: "no bananas, we say"


## Association Score

- What we really want here is some way to get at "surprise"
- One way to think about this is, is the occurrence of word $v$ in document $d$ surprisingly high (or low), given what we'd expect due to chance?
- Chance would be $\frac{c_{x_{1}: M}(v)}{N}$ words out of the len $(d)$ (length of document) words in document $d$
- Intuition: consider the ratio of observed frequency $c_{\mathrm{x}_{d}}(v)$ to "chance" under independence $\frac{c_{x_{1: M}}(v)}{N} \cdot \operatorname{len}(d)$


## Pointwise Mutual Information

- A common starting point is positive pointwise mutual information:

$$
[\mathbf{A}]_{v, d}=\left[\log \frac{c_{\mathrm{x}_{d}}(v)}{\frac{c_{\mathrm{x}_{1: M}}(v)}{N} \cdot \operatorname{len}(d)}\right]_{+}=\left[\log \cdot \frac{N \cdot c_{\mathrm{x}_{d}}(v)}{c_{\mathrm{x}_{1: M}}(v) \cdot \operatorname{len}(d)}\right]_{+}
$$

- For our problem
- $[\mathbf{A}]_{\text {banana }, d 1}=\log \frac{15 \cdot 1}{3 \cdot 6} \approx-0.18 \rightarrow 0$
- $[\mathbf{A}]_{\text {for }, d 2}=\log \frac{15 \cdot 1}{1.4} \approx 0.32$

|  | 1 | 2 | 3 |
| ---: | :---: | :---: | :---: |
| bananas | 1 | 1 | 1 |
| for | 0 | 1 | 0 |
| have | 1 | 0 | 0 |
| no | 1 | 0 | 1 |
| say | 0 | 1 | 1 |
| we | 1 | 0 | 1 |
| yes | 1 | 1 | 0 |

## A Nod to Information Theory

- Pointwise mutual information for two random variables $A$ and $B$ :

$$
\begin{gathered}
\operatorname{PMI}(a, b)=\log \frac{P(A=a, B=b)}{P(A=a) \cdot P(B=b)} \\
=\log \frac{P(A=a \mid B=b)}{P(A=a)} \\
=\log \frac{P(B=b \mid A=a)}{P(B=b)}
\end{gathered}
$$

- The average mutual information is given by

$$
\operatorname{MI}(A, B))=\sum_{a, b} P(A=a, B=b) \log \frac{P(A=a, B=b)}{P(A=a) \cdot P(B=b)}
$$

This comes from information theory; it is the amount of information each r.v. offers about the other.

## Pointwise Mutual Information

$$
[\mathbf{A}]_{v, d}=\left[\log \frac{c_{\mathrm{x}_{d}(v)}}{\frac{c_{\mathrm{x}_{1: M}}(v)}{N} \cdot \operatorname{len}(d)}\right]_{+}=\left[\log \cdot \frac{N \cdot c_{\mathrm{x}_{d}(v)}}{c_{\mathrm{x}_{1: M}}(v) \cdot \operatorname{len}(d)}\right]_{+}
$$

- If a word $v$ appears with nearly the same frequency in every document, its row $[\mathbf{A}]_{v}$, will be all nearly zero ( $\approx \log$ ).
- If a word $v$ occurs only in document $d, \mathrm{PMI}$ will be large and positive.
- PMI is very sensitive to rare occurrences; usually we smooth the frequencies and filter rare words.
- One way to think about PMI: it's telling us where a unigram model is most wrong.
- We could use $\mathbf{A}$ as feature representation of documents,


## Topic Models: Latent Semantic Indexing/Analysis (Deerwester et al. (1990))

- LSI/A seeks to solve:

$$
\underset{V \times M}{\mathbf{A}} \approx \underset{V \times d}{\mathbf{V}} \times \underset{d \times d}{\operatorname{diag}(\mathbf{s})} \times \underset{d \times M}{\mathbf{C}^{\top}}
$$

where $\mathbf{V}$ contains embeddings of words and $\mathbf{C}$ contains embeddings of documents

- This can be solved by applying singular value decomposition to $\mathbf{A}$



## LSI/A Example

- $d=2$ : Words and documents in two dimensions.


|  | 1 | 2 | 3 |
| ---: | ---: | ---: | ---: |
| bananas | 1 | 0 | 1 |
| for | 0 | 1 | 1 |
| have | 1 | 0 | 0 |
| no | 1 | 0 | 1 |
| say | 0 | 1 | 1 |
| we | 1 | 0 | 1 |
| yes | 1 | 1 | 0 |

Note how "no", "we", and "," are all in the exact same spot. Why?

## Understanding LSI/A

- Mapping words and documents into the same $d$-dimensional space.
- Bag of words assumption (Salton et al. (1975)): a document is nothing more than the distribution of words it contains.
- Distributional hypothesis (Harris (1954); Firth (1957)): words are nothing more than the distribution of contexts (here, documents) they occur in. Words that occur in similar contexts have similar meanings.
- A is sparse and noisy; LSI/A "fills in" the zeroes and tries to eliminate the noise.


## Probabilistic Topic Models

- LSI/A: assumes the elements of $\mathbf{A}$ are the result of Gaussian noise.
- Probabilistic Latent Semantic Analysis (PLSA) (Hofmann (1999)) model the probability distribution $p\left(\mathbf{x}_{d} \mid d\right)$
- This is a particular kind of conditional language model
- Latent Dirichlet Allocation (Blei et al. (2003))
- Introduce Bayesian inference to PLSA


## Overview

(1) EM Algorithm
(2) Language Models: Recap
(3) Topic Models
(4) Probabilistic Latent Semantic Analysis (PLSA)

## Document as a Sample of Mixed Topics

## Topic $\theta_{1}$ <br> government 0.3 response 0.2



Topic $\theta_{2}$ new 0.1 orleans 0.05
donate 0.1
Topic $\theta_{k}$ ) relief 0.05 help 0.02

[Criticism of government response to the hurricane primarily consisted of criticism of its response to the approach of the storm and its aftermath, specifically in the delayed response ] to the [ flooding of New Orleans. ... 80\% of the 1.3 million residents of the greater New Orleans metropolitan area evacuated ] ...[ Over seventy countries pledged monetary donations or other assistance]. ...

## Probabilistic Topic Models

- As a language model, LSI/A is kind of broken.
- It assumes the elements of $\mathbf{A}$ are the result of Gaussian noise.
- Hofmann (1999) proposed to model the probability distribution $P(d, w)$ based on each topic of a word $w$ in a document $d$
- This is a particular kind of conditional language model.


## Mixture Models

- Recall naive Bayes based mixture models for a document collection by K topics (classes)
- Each topic is a multinomial over words, and each document is generated from a single topic

Naive Bayes from Class Conditional Unigram Model


- For $m=1, \ldots, M$
- Choose $y_{m} \sim$ Multinomial $\left(y_{m} \mid 1, \pi\right)$
- Choose $N_{m}=\sum_{j}^{d} x_{m}^{j} \sim \operatorname{Poisson}(\xi)$
- For $n=1, \ldots, N_{m}$
- Choose $v \sim$ Multinomial $\left(v \mid 1, \boldsymbol{\theta}_{* \mid y_{m}}\right)=$ $\prod_{j=1}^{d}\left(\theta_{* \mid y_{m}}^{j}\right)^{v=j}$
It assumes "one document, one topic."


## Probabilistic Latent Semantic Analysis (PLSA)

- PLSA assumes that each document d (with word vector w) is generated from all topics, with documentspecific topic weights.
- Choose a $z_{m, i}=k$ from topic distribution $\pi$
- Choose a document from $d_{m} \sim \operatorname{Multinomial}\left(d_{m} \mid 1, \boldsymbol{\theta}_{k}\right)$
- Choose a word $w_{i}$ from $w_{i} \sim \operatorname{Multinomial}\left(w_{i} \mid 1, \phi_{k}\right)$
- Add one count of word $w_{i}$ to document $d_{m}$
- Repeat until we generate the document-word matrix

Under this process, the probability of picking the corpus is:

$$
\begin{aligned}
P(\mathcal{D}, \mathcal{W}) & =\prod_{m=1}^{M} \prod_{i=1}^{N_{m}} \sum_{k=1}^{K} P\left(z_{m, i}=k\right) P\left(d_{m} \mid \boldsymbol{\theta}_{k}\right) P\left(w_{i} \mid \phi_{k}\right) \\
& =\prod_{m=1}^{M} \prod_{i=1}^{V}\left(\sum_{k=1}^{K} P\left(z_{m, i}=k\right) P\left(d_{m} \mid \boldsymbol{\theta}_{k}\right) P\left(w_{i} \mid \phi_{k}\right)\right)^{c_{d_{m}}\left(w_{i}\right)}
\end{aligned}
$$

## Maximize Log Likelihood

- Log likelihood:

$$
P(\mathcal{D}, \mathcal{W})=\prod_{m=1}^{M} \prod_{i=1}^{V}\left(\sum_{k=1}^{K} P\left(z_{m, i}=k\right) P\left(d_{m} \mid \boldsymbol{\theta}_{k}\right) P\left(w_{i} \mid \phi_{k}\right)\right)^{c_{d_{m}}\left(w_{i}\right)}
$$

- To reduce the notation complexity, we denote:

$$
\log P(\mathcal{D}, \mathcal{W})=\sum_{d=1}^{M} \sum_{w=1}^{V} c_{d}(w) \log \left(\sum_{k=1}^{K} P(z) P(d \mid z) P(w \mid z)\right)
$$

- We denote the parameters as

$$
\Theta=\left\{\boldsymbol{\pi}, \boldsymbol{\phi}_{k}, \boldsymbol{\theta}_{k}, k=1, \ldots, K\right\}=\{P(z), P(d \mid z), P(w \mid z)\}
$$

- Note here $z$ is a hidden variable, and note that the sum is inside the log
- We can apply EM algorithm to maximize the likelihood


## Lower Bound and E-Step

- Remember Jensens inequality

$$
\log \sum_{i} P_{i} f_{i}(x) \geq \sum_{i} P_{i} \log f_{i}(x)
$$

- We first compute the lower bound of the log likelihood:

$$
\begin{aligned}
& \log P(\mathcal{D}, \mathcal{W}) \\
= & \sum_{d=1}^{M} \sum_{w=1}^{V} c_{d}(w) \log \left(\sum_{k=1}^{K} P(z) P(d \mid z) P(w \mid z)\right) \\
= & \sum_{d=1}^{M} \sum_{w=1}^{V} c_{d}(w) \log \left(\sum_{k=1}^{K} q_{z, d, w}(\Theta) \frac{P(z) P(d \mid z) P(w \mid z)}{q_{z, d, w}(\Theta)}\right) \\
\geq & \sum_{d=1}^{M} \sum_{w=1}^{V} c_{d}(w) \sum_{k=1}^{K} q_{z, d, w}(\Theta)\left(\log \frac{P(z) P(d \mid z) P(w \mid z)}{q_{z, d, w}(\Theta)}\right)
\end{aligned}
$$

- Note Jensen's inequality involves computing
$q_{z, d, w}(\Theta)=P\left(z \mid d, w, \Theta^{t}\right)$, which computes the probability of topics separately for each cell, under the current parameters $\Theta^{t}$
- This is exactly the E-step:

$$
P\left(z \mid d, w, \Theta^{t}\right) \propto P\left(z \mid \Theta^{t}\right) P\left(d \mid z, \Theta^{t}\right) P\left(w \mid z, \Theta^{t}\right)
$$

## M-Step

$$
\begin{aligned}
& \log P(\mathcal{D}, \mathcal{W}) \\
= & \sum_{d=1}^{M} \sum_{w=1}^{V} c_{d}(w) \log \left(\sum_{k=1}^{K} P(z) P(d \mid z) P(w \mid z)\right) \\
= & \sum_{d=1}^{M} \sum_{w=1}^{V} c_{d}(w) \log \left(\sum_{k=1}^{K} P\left(z \mid d, w, \Theta^{t}\right) \frac{P(z) P(d \mid z) P(w \mid z)}{P\left(z \mid d, w, \Theta^{t}\right)}\right) \\
= & \sum_{d=1}^{M} \sum_{w=1}^{V} c_{d}(w) \sum_{k=1}^{K} P\left(z \mid d, w, \Theta^{t}\right)\left(\log \frac{P(z) P(d \mid z) P(w \mid z)}{P\left(z \mid d, w, \Theta^{t}\right)}\right)
\end{aligned}
$$

- Maximizing the right of the above inequality by setting the gradient to zero amounts to the M -step, which gives
- $P(z) \propto \sum_{d} \sum_{w} c_{d}(w) P\left(z \mid d, w, \Theta^{t}\right)$
- $P(d \mid z) \propto \sum_{w} c_{d}(w) P\left(z \mid d, w, \Theta^{t}\right)$
- $P(w \mid z) \propto \sum_{d} c_{d}(w) P\left(z \mid d, w, \Theta^{t}\right)$


## Illustration of EM



Initializing $\pi_{d, j}$ and $P\left(w \mid \theta_{j}\right)$ with random values

## Illustration of EM



## Use of PLSA

- Once the model is trained, we can look at it in the following way
- $P(w \mid z)$ are the topics. Each topic is defined by a word multinomial. Often people find that the topics seem to have distinct semantic meanings.
- From $P(d \mid z)$ and $P(z)$, we can compute $P(z \mid d) \propto p(d \mid z) p(z) . P(z \mid d)$ is the topic wights for document $d$.
- One drawback of PLSA is that it is transductive in nature. That is, there is no easy way to handle a new document that is not already in the collection


## Use of Topic Models

| "Arts" | "Budgets" | "Children" | "Education" |
| :--- | :--- | :--- | :--- |
| NEW | MILLION | CHILDREN | SCHOOL |
| FILM | TAX | WOMEN | STUDENTS |
| SHOW | PROGRAM | PEOPLE | SCHOOLS |
| MUSIC | BUDGET | CHILD | EDUCATION |
| MOVIE | BILLION | YEARS | TEACHERS |
| PLAY | FEDERAL | FAMILIES | HIGH |
| MUSICAL | YEAR | WORK | PUBLIC |
| BEST | SPENDING | PARENTS | TEACHER |
| ACTOR | NEW | SAYS | BENNETT |
| FIRST | STATE | FAMILY | MANIGAT |
| YORK | PLAN | WELFARE | NAMPHY |
| OPERA | MONEY | MEN | STATE |
| THEATER | PROGRAMS | PERCENT | PRESIDENT |
| ACTRESS | GOVERNMENT | CARE | ELEMENTARY |
| LOVE | CONGRESS | LIFE | HAITI |

[^0]
## Example of topics found from a Science Magazine papers collection

| universe | 0.0439 |
| :--- | :--- |
| galasies | 0.0375 |
| clusters | 0.0279 |
| matter | 0.0233 |
| galasy | 0.0232 |
| cluster | 0.0214 |
| cosmic | 0.0137 |
| dark | 0.0131 |
| light | 0.0109 |
| density | 0.01 |


| drug | 0.0672 |
| :--- | :--- |
| patients | 0.0493 |
| drugs | 0.0444 |
| clinical | 0.0346 |
| treatment | 0.028 |
| trials | 0.0277 |
| therapy | 0.0213 |
| trial | 0.0164 |
| disease | 0.0157 |
| medical | 0.00997 |


| cells | 0.0675 |
| :--- | :--- |
| stem | 0.0478 |
| human | 0.0421 |
| cell | 0.0309 |
| gene | 0.025 |
| tissue | 0.0185 |
| cloning | 0.0169 |
| transfer | 0.0155 |
| blood | 0.0113 |
| embryos | 0.0111 |


| sequence 0.0818 <br> sequences 0.0493 <br> genome 0.033 <br> dna 0.0257 <br> sequencing 0.0172 <br> map 0.0123 <br> genes 0.0122 <br> chromosome 0.0119 <br> regions 0.0119 <br> human 0.0111 <br> immune 0.0909 <br> response 0.0375 <br> system 0.0358 <br> responses 0.0322 <br> antigen 0.0263 <br> antigens 0.0184 <br> immunity 0.0176 <br> immunology 0.0145 <br> intibody 0.014 <br> antoimmune 0.0128  and |
| :--- | :--- |


| years | 0.156 |
| :---: | :---: |
| million | 0.0556 |
| ago | 0.045 |
| time | 0.0317 |
| age | 0.0243 |
| year | 0.024 |
| record | 0.0238 |
| early | 0.0233 |
| billion | 0.0177 |
| history | 0.0148 |
| stars | 0.0524 |
| star | 0.0458 |
| astrophys | 0.0237 |
| mass | 0.021 |
| disk | 0.0173 |
| black | 0.0161 |
| gas | 0.0149 |
| stellar | 0.0127 |
| astron | 0.0125 |
| hole | 0.00824 |

## Remarks

- Like LSI/A, PLSA "squeezes" the relationship between words and contexts (documents) through topics.
- A document is now characterized as a mixture of corpus-universal topics (each of which is a unigram model).
- Topic mixtures can be incorporated into language models; see lyer and Ostendorf (1999), for example.
- Compared to LSI/A: PLSA is more interpretable (e.g., LSI/A can give negative values!).
- PLSA cannot assign probability to a text not in $\mathcal{W}$; it only defines conditional distributions over words given texts in $\mathcal{W}$.
- The next model overcomes this problem by adding another level of randomness: $P(z \mid d)$ becomes a random variable, not a parameter.


## References I

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993-1022.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science (JASIS), 41(6):391-407.
Firth, J. R. (1957). A synopsis of linguistic theory 1930-55., volume 1952-59, pages 1-32. The Philological Society, Oxford.
Harris, Z. (1954). Distributional structure. Word, 10(23):146-162.
Hofmann, T. (1999). Probabilistic latent semantic analysis. In UAI, pages 289-296.
Salton, G., Wong, A., and Yang, C. (1975). A vector space model for automatic indexing. Commun. ACM, 18(11):613-620.


[^0]:    The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be $\$ 200,000$ for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $\$ 400,000$ each. The Juilliard School, where music and the performing arts are taught, will get $\$ 250,000$. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $\$ 100,000$ donation, too.

