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Learning Inference

Representation

@ Representation: language models, word embeddings, topic models

@ Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

@ Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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© EM Algorithm
© Language Models: Recap
© Topic Models

@ Probabilistic Latent Semantic Analysis (PLSA)
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Naive Bayes and Mixture Model

1 xV

V)T are observed variables;

In naive Bayes, both yn,, and x, = (x,,, - - -,
7 and O are parameters

@ ©
® @

Figure: Native Bayes Figure: Mixture Model

However, in clustering problems, y,, is not observed (labeled before feeding
into machine learning algorithm)
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Expectation Maximization (EM) Algorithm

o EM might look like a heuristic method. However, it is not.
@ EM is guaranteed to find a local optimum of data log likelihood

e Recall if we have complete data set {xm, ym}™_, and denote
parameter set as © = {m, {0 }}, the likelihood estimation of native

Bayes is
M
jNB(e) = |Og H Pﬂ-,{ek}(xmd/m) = |Og P({Xm>ym}{\nﬂ:1‘e)
m=1

o However, now {ym}M_, are not observed (labeled), so we treat them
as hidden variables

@ We instead maximize the marginal log likelihood:

J(©) = log P({xm}m-1/©)
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EM Algorithm: General Idea

Inp(X )

gold pnew
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Lower Bound Q(©,©*) (Cont'd)

@ The lower bound is obtained via Jensens inequality (concavity of log
function)
log Y Pifi(x) > > P;log fi(x)
i i

which holds if the p;'s form a probability distribution
@ Then the lower bound can be derived:

Jen =y llong L P(Xm, y|©Y)
=Y 1'0gZy | Gy (©) E22AS)
>Zm IZy 1 Gxm,y (©) |0gP(Xm’7y(|@@))
= Q(0,0Y)

where Zle Gxy (©) = 1 is some distribution
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t
Z logqum,y Xma)/|@ Z qum,y M
qxrm}’(e)

””y m=1y=1

@ To make the bound tight for a particular value of ©, we need for the
step involving Jensens inequality in our derivation above to hold with

equality
@ For this to be true, we know it is sufficient that the expectation be
t
taken over a constant-valued random variable M(‘g)) =c
Axm Yy

e This is easily done by choosing gy,,.,(©)  P(xm, y|O")
@ Since Z}’le Gxn,y(©) = 1, we have (considered as E-step)

P(xm, y|©t
Gy (©) = e 0mXO) _ pyix,, )
Zy:l P(Xm,y|@ )

@ The equation holds in the inequality iff gy, , = P(y|xm, ©F)
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@ In M-step, we maximize the lower bound

Q(e%,0) = Zrl\::I 25:1 Gxm.y 10g P(x#,)je)
P(Yn| T0) P (x| yim, 01y

M K
= Zm:l Zy:l qu,y |Og Temy

@ Now we can set the gradient of @ w.r.t. @ and 6,'s to zero and
obtain a closed form solution

Zm Axm.,y
M

— Z qua.V
k= >om Z 1qu,y m

Tk —

@ Compared to naive Bayes:
_ Hym=k}|
M

- ol
9_] — Em,ym:k m _
k Zm,ym:k Zf:l le

Spring 2018
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Convergence of EM Algorithm

o E-step: With gy,,,(©) = P(y|xm, ©F), the equation holds, which
leads
Q(e", ") = J()

o M-step: Since ©'F! maximizes Q(Of, ©), we have

Q(e!, 0" > (e, o) = J(e")

@ On the other hand, @ is lower bound of 7, we have:
j(@tJrl) > Q(et)@l”rl) > Q(@t, et) _ j(@t)

@ This shows EM algorithm always increase the objective function (log
likelihood)

o By iterating, we arrive at a local maximum of it

Yangqiu Song (HKUST Learning for Text Analytics Spring 2018 11 /50
29 g /



A More General View of EM

@ EM is general and applies to joint probability models whenever some
random variables are missing

@ EM is advantageous when the marginal is difficult to optimize, but
the joint is easy

@ To be general, consider a joint distribution P(X, Z|©), where X is the
collection of observed variables, and Z unobserved variables

@ The quantity we want to maximize is the marginal log likelihood

J(©) =log P(X|©) =log Y _ P(X,Z|0©)
V4

which we assume difficult to optimize
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A More General View of EM (Cont'd)

@ One can introduce an arbitrary distribution over hidden variables
Q(2)

J(©) =logP(X|©)=log) ,P(X,Z|O)

=2z Q2)loe /;(%c‘a?)o(a P(X.Z|0)
=27 Q(2)log 5%, 218) 0(2)

=2.7Q2)log P(X(Z}e + 37 Q(2) log vy
= Y7 Q(2)log "G5 1+, Q(2) log 533 ey
= F(Q.0) + KL[Q(Z)||P(Z|X. )]

e Note F(Q,©) is the right hand side of Jensen's inequality
o If KL>0, F(Q,®) is a lower bound of J7(©)
o First consider the maximization of F on @ with ©* fixed
o F(Q,0) is maximized by Q(Z) = P(Z|X,©?) since J(©) is fixed and
KL attends its minimum zero (E-Step)
@ Next consider the maximization of F on © with Q fixed as above
o Note in this case F(Q,©) = Q(©*,0) (M-Step)
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[[lustration of EM

KL(q||p)

L(q.0) In p(X|0)

Figure: EM Algorithm
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[[lustration of EM

KL(q|lp) =0

L(q,6°%) In p(X|6°)

Figure: EM Algorithm
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[[lustration of EM

KL(ql/p)

SRV U (N S

£(3,6™) In p(X[6"*)

Figure: EM Algorithm
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Variations of EM

o Generalized EM (GEM) finds © that improves, but not necessarily
maximizes, F(Q,©) = Q(©,©") in the M-step. This is useful when
the exact M-step is difficult to carry out. Since this is still coordinate
ascent, GEM can find a local optimum.

@ Stochastic EM: The E-step is computed with Monte Carlo sampling.
This introduces randomness into the optimization, but asymptotically
it will converge to a local optimum.

e Variational EM: Q(Z) is restricted to some easy-to-compute subset of
distributions, for example the fully factorized distributions
Q(Z) =11, Q(zi). In general P(Z|X,©), which might be intractable
to compute, will not be in this subset. There is no longer guarantee
that variational EM will find a local optimum.
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© EM Algorithm
© Language Models: Recap
© Topic Models

@ Probabilistic Latent Semantic Analysis (PLSA)
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Paragraphs of Text

A language model is a probability distribution over V1

Typically P decomposes into probabilities P(x;|h;)
e We considered n-gram, log-linear, and neural language models, etc.

Today: probabilistic models that relate a word and its cotext (the
linguistic environment of the word)

This might help us learn to represent words, contexts, or both

Yanggqiu Song (HKUST) Learning for Text Analytics Spring 2018 19 / 50



Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the
observed value of a random variable X;, what other random variables are
predictive of /related to X;?
@ The words that occur within a small “window” around i (e.g.,
Xj—2, Xi—1, Xi+1, Xi+2, or maybe the sentence containing i) —
distributional semantics
@ The document containing / (a moderate-to-large collection of other
words) — topic models
@ A sentence known to be a translation of the one containing i —
translation models
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Overview

© Topic Models
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Topic Models

@ Words are not independent and identically distributed (i.i.d.)!
o Predictable given history: n-gram/Markov models
o Predictable given other words in the document: topic models
o Let Z={1,...,k} be a set of “topics” or “themes” that will help us
capture the interdependence of words in a document

o Usually these are not named or characterized in advance; they are just
k different values with no a priori meaning
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Term-Document Matrix

o Let A € RV*M contain statistics of association between words in V
and M documents. N is the total number of word tokens.
@ Comparison of contexts
o Local context (Let's try to keep the kitchen clean.)

context ¢

‘clean 1 1 1 1

word w N

kitchen try Let's keep

o Document-level context ([A]y.q = ¢, (v))
o dl: "yes, we have no bananas”
e d2: “say yes for bananas”
e d3: “no bananas , we say”

bananas
for
have

no

say

we

yes | 1

H O KRR OR R
HOROORKRON
O R R OORRF W
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Association Score

@ What we really want here is some way to get at “surprise”

@ One way to think about this is, is the occurrence of word v in
document d surprisingly high (or low), given what we'd expect due to
chance?

e Chance would be MN(V) words out of the len(d) (length of
document) words in document d

o Intuition: consider the ratio of observed frequency ¢, (v) to “chance”

under independence %(V) - len(d)
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Pointwise Mutual Information

@ A common starting point is positive pointwise mutual information:

g e ] [ Ne()
Al = [I : %(V) : /en(d)] + [l & S (V) - /en(d)] +

@ For our problem
° [A]banana,dl = |0g % ~ —-0.18—0
° [A]for,d2 = |0g 151 ~ 0.32

14
1123
, 11101
bananas | 1 |1 |1
for |0 10
have | 1 | 0| 0
no | 1|01
say |0 | 1|1
we |1 |01
yes | 1|10
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A Nod to Information Theory

@ Pointwise mutual information for two random variables A and B:

o, PA=aB=b)
~ % P(A=2) P(B=b)

PMI(a, b)

P(A = a|B = b)
P(A=a)
P(B = b|A = a)
P(B = b)

@ The average mutual information is given by

= log

= log

P(A=a,B =0b)
(A=a)-P(B=b)

MKAB»:E:HA:aB:bN%P
a,b

This comes from information theory; it is the amount of information
each r.v. offers about the other.
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Pointwise Mutual Information

S [N 10 N P 2 70
[A]V’d N [log Sam\V) M( /en(d)] |:|0g CXI:M(V) : Ien(d):| +

If a word v appears with nearly the same frequency in every
document, its row [A], . will be all nearly zero (~ log).

If a word v occurs only in document d, PMI will be large and positive.

@ PMI is very sensitive to rare occurrences; usually we smooth the
frequencies and filter rare words.

@ One way to think about PMI: it’s telling us where a unigram model is
most wrong.
@ We could use A as feature representation of documents,
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Topic Models: Latent Semantic Indexing/Analysis

(Deerwester et al. (1990))

@ LSI/A seeks to solve:

A ~ V xdiag(s)x C '
VxM Vxd und dx M

where V contains embeddings of words and C contains embeddings of
documents

@ This can be solved by applying singular value decomposition to A
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LSI/A Example

o d = 2: Words and documents in two dimensions.

e have - 1123
o ,[1]o]1
bananas | 1 | 1|1

1 "weo for |0 |10
5 ves , have | 1 | 0|0
i no | 101

S say . say | 0|11
o . banang we|1|0]1
' for yes | 110

—1' 0 —G‘ 3 —D‘ i} —‘]‘,4 —0‘,2 O{G
Note how “no", “we", and “," are all in the exact same spot. Why?
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Understanding LSI/A

@ Mapping words and documents into the same d-dimensional space.
e Bag of words assumption (Salton et al. (1975)): a document is
nothing more than the distribution of words it contains.

e Distributional hypothesis (Harris (1954); Firth (1957)): words are
nothing more than the distribution of contexts (here, documents) they
occur in. Words that occur in similar contexts have similar meanings.

@ A is sparse and noisy; LSI/A "“fills in" the zeroes and tries to
eliminate the noise.
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Probabilistic Topic Models

@ LSI/A: assumes the elements of A are the result of Gaussian noise.

@ Probabilistic Latent Semantic Analysis (PLSA) (Hofmann (1999))
model the probability distribution p(x4|d)

e This is a particular kind of conditional language model

@ Latent Dirichlet Allocation (Blei et al. (2003))

o Introduce Bayesian inference to PLSA
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Overview

@ Probabilistic Latent Semantic Analysis (PLSA)
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Document as a Sample of Mixed Topics
government 0.3
< response 0.2
city 0.2
@ new 0.1

orleans 0.05

[ Criticism of government i
response to the hurricane i
primarily consisted of criticism of !

its response to the approach of |

the storm and its aftermath, i
specifically in the delayed i

donate 0.1 response ] to the [ flooding of

relief 0.05
help 0.02

is 0.05
the 0.04

a0.03

New Orleans. ... 80% of the 1.3
million residents of the greater
New Orleans metropolitan area
evacuated ] ...[ Over seventy
countries pledged monetary
donations or other assistance]. ...
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Probabilistic Topic Models

@ As a language model, LSI/A is kind of broken.
o It assumes the elements of A are the result of Gaussian noise.

@ Hofmann (1999) proposed to model the probability distribution
P(d, w) based on each topic of a word w in a document d

e This is a particular kind of conditional language model.
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Mixture Models

@ Recall naive Bayes based mixture models for a document collection by
K topics (classes)

@ Each topic is a multinomial over words, and each document is
generated from a single topic

Naive Bayes from Class Conditional Unigram Model

@ e Form=1,....M

@ o Choose yy, ~ Multinomial(ym,|1, )
o Choose N, = Zjd x4, ~ Poisson(&)

@ x, e Forn=1,... N,

o Choose v ~ Multinomial(v|1,8,,,) =
d j v=j

m=1,..M HJ'=1(9/*\ym)

It assumes “one document, one topic.”
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Probabilistic Latent Semantic Analysis (PLSA)

@ PLSA assumes that each document d (with word vector w) is
generated from all topics, with documentspecific topic weights.

@ Choose a zp, ; = k from topic distribution 7

@ Choose a document from
@ dm ~ Multinomial(dm|1,0)
(an) o Choose a word w; from
i w; ~ Multinomial(w;|1, ¢,)
@ @ @ Add one count of word w; to document d,

@ Repeat until we generate the document-word
matrix

Under this process, the probability of picking the corpus is:

POW) =l 1 Sl Py = OP(IOOPI)
= T T (0 Pama = K)P(dnl0)P(wild)
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Maximize Log Likelihood

o Log likelihood:

P(D,W) = [Ty T (S0 Pz, = k)P(dm|9k)P(W,.|¢k))Cd'"‘””")

@ To reduce the notation complexity, we denote:

log P(D,W) = Y4, 01y ca(w)log (L1, P(2)P(d|z)P(wlz)

@ We denote the parameters as
© ={m ¢,0,k=1,... . K} ={P(z), P(d|z), P(w|z)}

@ Note here z is a hidden variable, and note that the sum is inside the
log

© We can apply EM algorithm to maximize the likelihood
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Lower Bound and E-Step

@ Remember Jensens inequality
log » " Pifi(x) > )  Pilog fi(x)

@ We first compute the lower bound of the log likelihood:
log P(D, W)
= SHL SV ca(w)log (LIC, P(2)P(d|2)P(wiz2))
P(z)P(d|z)P(w|z
= SUL Y calw)log (LA, 0z.aw(©) HELE ) )

qz.d,w

S5 o) Sl G an(©) (fog Pt

@ Note Jensen's inequality involves computing
dz.d.w(©) = P(z|d, w,©"), which computes the probability of topics
separately for each cell, under the current parameters ©°

@ This is exactly the E-step:

P(z|d,w,©") < P(z|©")P(d|z,0")P(w|z, ©F)

v
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log P(D, W)
= XL calw)log (I, P(2)P(d|z)P(w]2))
= XU calw) log (XA, P(zld, w, 00) PEZGRE)
= il Yl calw) Iy Plald, w, ©1) (log PR

@ Maximizing the right of the above inequality by setting the gradient
to zero amounts to the M-step, which gives
o P(2) x 34 3, ca(w)P(z]d, w, ©)
o P(d|z) x>, ca(w)P(z|d,w,O")
o P(w|z) x Y, ca(w)P(z|d, w,OF)
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[[lustration of EM

Ta11 %, Topic coverage
c(w, d) (P(8,ld)) (P(8,ldy))
aid 7 1-dy -
d p price 5
oil 6
- i1 2,2
aid 8 (P(@ildy)) (P(@d)) 1-dm 3,
d2 price 7
oil 5
Pw| 6) Top ic 1 Topic 2 Initializing w, ; and P(w| 8) with
aid random values
price
oil
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[[lustration of EM

{ c(w,d)a-p(zd,,.,=B»p(zdn=j) e
A Leowdp(zy =B) n,, Topic coverage

c(w, d) ( P( 91|d1)) (P(85dy))

aid 7 e 1-3y -
d, price 5 NS J

oil 6 NN

. i1 2,2

aid 8 M (PO,dy)) (P@O,d)) 1-kg Ap
d2 price 7 NS

oil 5 NS

P(w| 6) Topic 1 Topic 2 Iteration 1: E Step: split word counts
aid with different topics (by computing 7’ s)
price
oil
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[llustration of EM

i c(w,d)(l-p(z.,,.v=B))padu=j) ,
/ cnd)p(z = B) n,, Topic coverage

c(w, d) (P(91Id1)) (P(8]dy))

aid 7 \ Ay
d; | prices ——

oil 6 —

. TTa2,1 T2
aid 8 IEEEEEE—— (PO,dy)) (P(6,dy)) 1-dg
d2 price 7 NN

oil 5 Nm— Bl

P(w| 8)  Topicl Topic 2 Iteration 1: M Step: re-estimate i, ;

aid and P(w| 6) by adding and normalizing
the splitted word counts

price

oil

Yanggqiu Song (HKUST) Learning for Text Analytics Spring 2018 42 / 50



[llustration of EM

e(w,d)(1 - p(zq,, = B))P(zdu=j) N

d,

P(w| 6) Toptc’l Topic 2.7

Yanggqiu Song (HKUST)

e { c(w,d)p(z,,u =B)
cw,d) -

aid 7/ ﬂ

price 5’ ]
oil 6 I

aid B — :

price 7 |
oil 5—

\
i

2

aid -- [ ] |
price mEEE [ ] |
oif EEEEE NN

n,, Topic coverage
(P(91|d1)) (P(85]dy))

J“’
(P(91Idz)) (P(ezw,)) 1-dy

J )

Iteration 2: E Step: split word counts
with different topics (by computing 7’ s)
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[[lustration of EM

{ ew,d)(1 - p(z4, = B))p(z47) )
A Letwdipzy=B) T ny, Topic coverage

c(w, d) (P(6]d)) (P(8,ld;))

aid 7 et Tha
d, price 5 I J

oil 6 NN

- 2,1 2,2

aid 8 NI (P(0,|d2) ) (P@jdy)) 1-hg Ap
d, | price 7 Nnmm——

oil 5 NI

P(w] 6) Topic 1 Topic 2 Iteration 2: E Step: split word counts
aid with different topics (by computing 7’ s)
price
oil
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[llustration of EM

ew,d)(1 - p(zq,, = B)p(24,7)

d;

/ { cwd)p(y, =B)
c(w, d)

aid 7 lemm—
price 5 I
oil 6 INNEmEm

aid 8 NI
price 7 NN
oil 5 NN

Tar,1
(P(84]dy) )

(P(G,ld,))

P(w| 6)
aid

price

oil

Yanggqiu Song (HKUST)

Topic 1 Topic 2
] ]
N N .
ENEE EEE

Ta1,2
(P(6,]dy) )

J‘“
(P(ezldz)) 1-2g

J )

Iteration 3,4, 5, ...
Until converging

Learning for Text Analytics

Spring 2018

Topic coverage
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Use of PLSA

@ Once the model is trained, we can look at it in the following way

o P(wlz) are the topics. Each topic is defined by a word multinomial.
Often people find that the topics seem to have distinct semantic
meanings.

e From P(d|z) and P(z), we can compute P(z|d) x p(d|z)p(z). P(z|d)
is the topic wights for document d.

@ One drawback of PLSA is that it is transductive in nature. That is,
there is no easy way to handle a new document that is not already in
the collection
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Use of Topic Models

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS )

ACTOR NEW SAYS

FIRST STATE FAMILY

YORK PLAN WELFARE

OPERA MONEY MEN

THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
d felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act

tan Opera Co., New York Philharmonic and Juilliard School. “Our

port in health, medical 1 reh. education
+ Randolph A. Hearst said Monday in
200,000 for its new build
The Metropolitan Opera Co. and
New York Philharmonic will re 0 each. The Juilliard School. where music and
the performing arts are taught, will get § 0. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual anoval $100.000
donation, too.

every bit as important as our traditional areas of <up
and the social service
announcing the gre
will young artists and |

Hearst Foundation P

which

nts

Lincoln Center’s share v

(HKUST) Learning for Text Analytics Spring 2018




Example of topics found from a Science Magazine

collection

unmiverse 0.0439| | drug 0.0672 cells 0.0675 sequence 00818 years 0.156
galasaes 0.0375| | panents 0.0493 stemn 00478 sequences 0.0493 malhon 0.0556
clusters 0.0279| | drugs 0.0444 | | human 0.0421 genome 0.033 ago 0.045
matter 0.0233| | claucal 0.0346 cell 0.0309 dna 00257 time 0.0317
galaxy 00232| | treatment 0.028 gene 0.025 sequencing  0.0172 age 0.0243
cluster 0.0214| | mals 0.0277 tissue 0.0185 map 0.0123 year 0024
cosmic 00137| | therapy 0.0213 cloning 0.0169 genes 00122 record 0.0238
dark 0.0131] | tnal 0.0164 transfer 0.0155 chromosome 00119 early 00233
ght 0.0105| | disease 0.0157 blood 0.0113 regions 00119 balkon 0.0177
density 0.01 medical 000997 | embryos 0.0111 human 0.0111 history 0.0148
bactena 00983 male 00558 theory 0.0811 mmune 0.0909 | | stars 00524
bactenal 0.0561 females 0.0541 physics 0.0782 response 0.0375 star 0.0458
resistance 00431 femnale 00529 physicists 0.0146 system 00358 | | astrophys 0.0237
cob 0.0381 males 00477 einstein 0.0142 responses 00322 | mass 0.021
strams 0.025 sex 0.0339 uraversty 0.013 anbgen 00263 | | disk 0.0173
macrobiol 00214 reproductve 0.0172 gravity 0.013 anbgens 00184 | | black 0.0161
microbial 0.0196 offspring 00168 black 0.0127 mmmuraty 00176 | | gas 0.014%
stram 0.0165 sexual 0.0166 theories 0.01 mmunology 00145 | stellar 0.0127
salmonella 00163 reproducton 00143 aps 0.00987| | antbody 0014 astron 0.0125
resstant 0.0145 egas 0.0138 matter 0.00954| | autownmune 00128 | | hole 0.00824
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o Like LSI/A, PLSA “squeezes” the relationship between words and
contexts (documents) through topics.

@ A document is now characterized as a mixture of corpus-universal
topics (each of which is a unigram model).

@ Topic mixtures can be incorporated into language models; see lyer
and Ostendorf (1999), for example.

o Compared to LSI/A: PLSA is more interpretable (e.g., LSI/A can give
negative values!).

@ PLSA cannot assign probability to a text not in W; it only defines
conditional distributions over words given texts in W.

@ The next model overcomes this problem by adding another level of
randomness: P(z|d) becomes a random variable, not a parameter.
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