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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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Naive Bayes and Mixture Model

In naive Bayes, both ym and xm = (x1
m, . . . , x

V
m )T are observed variables;

π and θk are parameters

Figure: Native Bayes Figure: Mixture Model

However, in clustering problems, ym is not observed (labeled before feeding
into machine learning algorithm)
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Expectation Maximization (EM) Algorithm

EM might look like a heuristic method. However, it is not.

EM is guaranteed to find a local optimum of data log likelihood

Recall if we have complete data set {xm, ym}Mm=1 and denote
parameter set as Θ = {π, {θk}}, the likelihood estimation of native
Bayes is

JNB(Θ) = log
M∏

m=1

Pπ,{θk}(xm, ym) = logP({xm, ym}Mm=1|Θ)

However, now {ym}Mm=1 are not observed (labeled), so we treat them
as hidden variables

We instead maximize the marginal log likelihood:

J (Θ) = logP({xm}Mm=1|Θ)
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EM Algorithm: General Idea
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Lower Bound Q(Θ,Θt) (Cont’d)

The lower bound is obtained via Jensens inequality (concavity of log
function)

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

which holds if the pi ’s form a probability distribution

Then the lower bound can be derived:

J (Θt) =
∑M

m=1 log
∑K

y=1 P(xm, y |Θt)

=
∑M

m=1 log
∑K

y=1 qxm,y (Θ)P(xm,y |Θt)
qxm,y (Θ)

≥
∑M

m=1

∑K
y=1 qxm,y (Θ) log P(xm,y |Θt)

qxm,y (Θ).
= Q(Θ,Θt)

where
∑K

y=1 qxm,y (Θ) = 1 is some distribution
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E-step

M∑
m=1

log
K∑

y=1

qxm,y (Θ)
P(xm, y |Θt)

qxm,y (Θ)
≥

M∑
m=1

K∑
y=1

qxm,y (Θ) log
P(xm, y |Θt)

qxm,y (Θ)

To make the bound tight for a particular value of Θ, we need for the
step involving Jensens inequality in our derivation above to hold with
equality

For this to be true, we know it is sufficient that the expectation be

taken over a constant-valued random variable P(xm,y |Θt)
qxm,y (Θ) = c

This is easily done by choosing qxm,y (Θ) ∝ P(xm, y |Θt)

Since
∑K

y=1 qxm,y (Θ) = 1, we have (considered as E-step)

qxm,y (Θ) =
P(xm, y |Θt)∑K
y=1 P(xm, y |Θt)

= P(y |xm,Θt)

The equation holds in the inequality iff qxm,y = P(y |xm,Θt)
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M-step

In M-step, we maximize the lower bound

Q(Θt ,Θ) =
∑M

m=1

∑K
y=1 qxm,y log P(xm,y |Θ)

qxm,y

=
∑M

m=1

∑K
y=1 qxm,y log

P(ym|π)P(xm|ym,θ∗|ym )

qxm,y

Now we can set the gradient of Q w.r.t. π and θk ’s to zero and
obtain a closed form solution

πk =
∑

m qxm,y

M

θjk =
∑

m qxm,yx
j
m∑

m

∑d
j=1 qxm,yx

j
m

Compared to naive Bayes:

πk = |{ym=k}|
M

θjk =
∑

m,ym=k x
j
m∑

m,ym=k

∑d
j=1 x

j
m
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Convergence of EM Algorithm

E-step: With qxm,y (Θ) = P(y |xm,Θt), the equation holds, which
leads

Q(Θt ,Θt) = J (Θt)

M-step: Since Θt+1 maximizes Q(Θt ,Θ), we have

Q(Θt ,Θt+1) ≥ Q(Θt ,Θt) = J (Θt)

On the other hand, Q is lower bound of J , we have:

J (Θt+1) ≥ Q(Θt ,Θt+1) ≥ Q(Θt ,Θt) = J (Θt)

This shows EM algorithm always increase the objective function (log
likelihood)

By iterating, we arrive at a local maximum of it
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A More General View of EM

EM is general and applies to joint probability models whenever some
random variables are missing

EM is advantageous when the marginal is difficult to optimize, but
the joint is easy

To be general, consider a joint distribution P(X ,Z |Θ), where X is the
collection of observed variables, and Z unobserved variables

The quantity we want to maximize is the marginal log likelihood

J (Θ) = logP(X |Θ) = log
∑
Z

P(X ,Z |Θ)

which we assume difficult to optimize
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A More General View of EM (Cont’d)

One can introduce an arbitrary distribution over hidden variables
Q(Z )

J (Θ) = logP(X |Θ) = log
∑

Z P(X ,Z |Θ)
=
∑

Z Q(Z ) logP(X |Θ)

=
∑

Z Q(Z ) log P(X |Θ) Q(Z) P(X ,Z |Θ)
P(X ,Z |Θ) Q(Z)

=
∑

Z Q(Z ) log P(X ,Z |Θ)
Q(Z) +

∑
Z Q(Z ) log P(X |Θ)Q(Z)

P(X ,Z |Θ)

=
∑

Z Q(Z ) log P(X ,Z |Θ)
Q(Z) +

∑
Z Q(Z ) log Q(Z)

P(Z |X ,Θ)

= F (Q,Θ) + KL[Q(Z )||P(Z |X ,Θ)]

Note F (Q,Θ) is the right hand side of Jensen’s inequality
If KL > 0, F (Q,Θ) is a lower bound of J (Θ)

First consider the maximization of F on Q with Θt fixed
F (Q,Θ) is maximized by Q(Z ) = P(Z |X ,Θt) since J (Θ) is fixed and
KL attends its minimum zero (E-Step)

Next consider the maximization of F on Θ with Q fixed as above
Note in this case F (Q,Θ) = Q(Θt ,Θ) (M-Step)
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Illustration of EM

Figure: EM Algorithm
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Illustration of EM

Figure: EM Algorithm
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Illustration of EM

Figure: EM Algorithm
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Variations of EM

Generalized EM (GEM) finds Θ that improves, but not necessarily
maximizes, F (Q,Θ) = Q(Θ,Θt) in the M-step. This is useful when
the exact M-step is difficult to carry out. Since this is still coordinate
ascent, GEM can find a local optimum.

Stochastic EM: The E-step is computed with Monte Carlo sampling.
This introduces randomness into the optimization, but asymptotically
it will converge to a local optimum.

Variational EM: Q(Z ) is restricted to some easy-to-compute subset of
distributions, for example the fully factorized distributions
Q(Z ) =

∏
i Q(zi ). In general P(Z |X ,Θ), which might be intractable

to compute, will not be in this subset. There is no longer guarantee
that variational EM will find a local optimum.
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Paragraphs of Text

A language model is a probability distribution over V†

Typically P decomposes into probabilities P(xi |hi )
We considered n-gram, log-linear, and neural language models, etc.

Today: probabilistic models that relate a word and its cotext (the
linguistic environment of the word)

This might help us learn to represent words, contexts, or both
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the
observed value of a random variable Xi , what other random variables are
predictive of/related to Xi?

The words that occur within a small “window” around i (e.g.,
xi−2, xi−1, xi+1, xi+2, or maybe the sentence containing i) →
distributional semantics

The document containing i (a moderate-to-large collection of other
words) → topic models

A sentence known to be a translation of the one containing i →
translation models
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Topic Models

Words are not independent and identically distributed (i.i.d.)!

Predictable given history: n-gram/Markov models
Predictable given other words in the document: topic models

Let Z = {1, . . . , k} be a set of “topics” or “themes” that will help us
capture the interdependence of words in a document

Usually these are not named or characterized in advance; they are just
k different values with no a priori meaning
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The Term-Document Matrix

Let A ∈ RV×M contain statistics of association between words in V
and M documents. N is the total number of word tokens.
Comparison of contexts

Local context (Let’s try to keep the kitchen clean.)

Document-level context ([A]v ,d = cxd (v))
d1: “yes, we have no bananas”
d2: “say yes for bananas”
d3: “no bananas , we say”
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Association Score

What we really want here is some way to get at “surprise”

One way to think about this is, is the occurrence of word v in
document d surprisingly high (or low), given what we’d expect due to
chance?

Chance would be
cx1:M

(v)

N words out of the len(d) (length of
document) words in document d

Intuition: consider the ratio of observed frequency cxd (v) to “chance”

under independence
cx1:M

(v)

N · len(d)
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Pointwise Mutual Information

A common starting point is positive pointwise mutual information:

[A]v ,d =

[
log

cxd (v)
cx1:M

(v)

N · len(d)

]
+

=

[
log · N · cxd (v)

cx1:M
(v) · len(d)

]
+

For our problem
[A]banana,d1 = log 15·1

3·6 ≈ −0.18→ 0
[A]for ,d2 = log 15·1

1·4 ≈ 0.32
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A Nod to Information Theory

Pointwise mutual information for two random variables A and B:

PMI(a, b) = log
P(A = a,B = b)

P(A = a) · P(B = b)

= log
P(A = a|B = b)

P(A = a)

= log
P(B = b|A = a)

P(B = b)

The average mutual information is given by

MI(A,B)) =
∑
a,b

P(A = a,B = b) log
P(A = a,B = b)

P(A = a) · P(B = b)

This comes from information theory; it is the amount of information
each r.v. offers about the other.
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Pointwise Mutual Information

[A]v ,d =

[
log

cxd (v)

cx1:M
(v)

N · len(d)

]
+

=

[
log ·

N · cxd (v)

cx1:M
(v) · len(d)

]
+

If a word v appears with nearly the same frequency in every
document, its row [A]v ,· will be all nearly zero (≈ log).

If a word v occurs only in document d , PMI will be large and positive.

PMI is very sensitive to rare occurrences; usually we smooth the
frequencies and filter rare words.

One way to think about PMI: it’s telling us where a unigram model is
most wrong.

We could use A as feature representation of documents,
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Topic Models: Latent Semantic Indexing/Analysis
(Deerwester et al. (1990))

LSI/A seeks to solve:

A
V ×M
≈ V

V × d
× diag(s)

d × d

× C
d ×M

>

where V contains embeddings of words and C contains embeddings of
documents

This can be solved by applying singular value decomposition to A
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LSI/A Example

d = 2: Words and documents in two dimensions.

Note how “no”, “we”, and “,” are all in the exact same spot. Why?
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Understanding LSI/A

Mapping words and documents into the same d-dimensional space.

Bag of words assumption (Salton et al. (1975)): a document is
nothing more than the distribution of words it contains.

Distributional hypothesis (Harris (1954); Firth (1957)): words are
nothing more than the distribution of contexts (here, documents) they
occur in. Words that occur in similar contexts have similar meanings.

A is sparse and noisy; LSI/A “fills in” the zeroes and tries to
eliminate the noise.
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Probabilistic Topic Models

LSI/A: assumes the elements of A are the result of Gaussian noise.

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann (1999))
model the probability distribution p(xd |d)

This is a particular kind of conditional language model

Latent Dirichlet Allocation (Blei et al. (2003))

Introduce Bayesian inference to PLSA

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 31 / 50



Overview

1 EM Algorithm

2 Language Models: Recap

3 Topic Models

4 Probabilistic Latent Semantic Analysis (PLSA)

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 32 / 50



Document as a Sample of Mixed Topics
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Probabilistic Topic Models

As a language model, LSI/A is kind of broken.

It assumes the elements of A are the result of Gaussian noise.

Hofmann (1999) proposed to model the probability distribution
P(d ,w) based on each topic of a word w in a document d

This is a particular kind of conditional language model.
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Mixture Models

Recall naive Bayes based mixture models for a document collection by
K topics (classes)

Each topic is a multinomial over words, and each document is
generated from a single topic

Naive Bayes from Class Conditional Unigram Model

For m = 1, . . . ,M

Choose ym ∼ Multinomial(ym|1,π)

Choose Nm =
∑d

j x
j
m ∼ Poisson(ξ)

For n = 1, . . . ,Nm

Choose v ∼ Multinomial(v |1,θ∗|ym ) =∏d
j=1(θ

j
∗|ym )

v=j

It assumes “one document, one topic.”
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Probabilistic Latent Semantic Analysis (PLSA)

PLSA assumes that each document d (with word vector w) is
generated from all topics, with documentspecific topic weights.

Choose a zm,i = k from topic distribution π

Choose a document from
dm ∼ Multinomial(dm|1,θk)

Choose a word wi from
wi ∼ Multinomial(wi |1,φk)

Add one count of word wi to document dm

Repeat until we generate the document-word
matrix

Under this process, the probability of picking the corpus is:

P(D,W) =
∏M

m=1

∏Nm
i=1

∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

=
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 36 / 50



Maximize Log Likelihood

Log likelihood:

P(D,W) =
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )

To reduce the notation complexity, we denote:

logP(D,W) =
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
We denote the parameters as
Θ = {π,φk ,θk , k = 1, . . . ,K} = {P(z),P(d |z),P(w |z)}
Note here z is a hidden variable, and note that the sum is inside the
log

We can apply EM algorithm to maximize the likelihood
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Lower Bound and E-Step

Remember Jensens inequality

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

We first compute the lower bound of the log likelihood:

logP(D,W)

=
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
=

∑M
d=1

∑V
w=1 cd(w) log

(∑K
k=1 qz,d ,w (Θ)P(z)P(d |z)P(w |z)

qz,d,w (Θ)

)
≥

∑M
d=1

∑V
w=1 cd(w)

∑K
k=1 qz,d ,w (Θ)

(
log P(z)P(d |z)P(w |z)

qz,d,w (Θ)

)
Note Jensen’s inequality involves computing
qz,d ,w (Θ) = P(z |d ,w ,Θt), which computes the probability of topics
separately for each cell, under the current parameters Θt

This is exactly the E-step:

P(z |d ,w ,Θt) ∝ P(z |Θt)P(d |z ,Θt)P(w |z ,Θt)
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M-Step

logP(D,W)

=
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
=

∑M
d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z |d ,w ,Θt)P(z)P(d |z)P(w |z)

P(z|d ,w ,Θt)

)
=

∑M
d=1

∑V
w=1 cd(w)

∑K
k=1 P(z |d ,w ,Θt)

(
log P(z)P(d |z)P(w |z)

P(z|d ,w ,Θt)

)
Maximizing the right of the above inequality by setting the gradient
to zero amounts to the M-step, which gives

P(z) ∝
∑

d

∑
w cd(w)P(z |d ,w ,Θt)

P(d |z) ∝
∑

w cd(w)P(z |d ,w ,Θt)
P(w |z) ∝

∑
d cd(w)P(z |d ,w ,Θt)
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Illustration of EM
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Illustration of EM
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Use of PLSA

Once the model is trained, we can look at it in the following way

P(w |z) are the topics. Each topic is defined by a word multinomial.
Often people find that the topics seem to have distinct semantic
meanings.
From P(d |z) and P(z), we can compute P(z |d) ∝ p(d |z)p(z). P(z |d)
is the topic wights for document d .

One drawback of PLSA is that it is transductive in nature. That is,
there is no easy way to handle a new document that is not already in
the collection
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Use of Topic Models
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Example of topics found from a Science Magazine papers
collection
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Remarks

Like LSI/A, PLSA “squeezes” the relationship between words and
contexts (documents) through topics.

A document is now characterized as a mixture of corpus-universal
topics (each of which is a unigram model).

Topic mixtures can be incorporated into language models; see Iyer
and Ostendorf (1999), for example.

Compared to LSI/A: PLSA is more interpretable (e.g., LSI/A can give
negative values!).

PLSA cannot assign probability to a text not in W; it only defines
conditional distributions over words given texts in W.

The next model overcomes this problem by adding another level of
randomness: P(z |d) becomes a random variable, not a parameter.
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