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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, unsupervised learning, semi-supervised
learning, sequence models, deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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Overview

1 Problem Definition

2 Generative vs. Discriminative Classification

3 General Linear Classification

4 Unsupervised Learning

5 EM Algorithm

6 Evaluation of Classification

7 Evaluation of Clustering
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Binary to Multi-class

Decompose the prediction into multiple binary decisions
One-vs-all

No theoretical justification
Calibration issues: We are comparing scores produced by K classifiers
trained independently. No reason for the scores to be in the same
numerical range!
Might not always work: Yet, works fairly well in many cases, especially
if the underlying binary classifiers are tuned, regularized

All-vs-all

O(K 2) weight vectors to train and store
Size of training set for a pair of labels could be very small, leading to
overfitting of the binary classifiers
Prediction is often ad-hoc and might be unstable. E.g., What if two
classes get the same number of votes? For a tournament, what is the
sequence in which the labels compete?
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Recall: One-vs-all Classification

Assumption: Each class individually separable from all the others

Train K binary classifiers w1,w2, . . .wK using any binary classification
algorithm we have seen

Prediction: “Winner Takes All”: label = arg maxi w
>
i x
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Training a Single Classifier

Rewrite input features and weight vector

Define a feature vector for label i being associated to input x
Stack all weight vectors into an nK -dimensional vector

This is called the Kesler construction

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 7 / 39



Let Us Examine One-vs-all Again

For an example with label i , we want w>i x > w>j x for all j

This is equivalent to

w>φ(x, i) > w>φ(x, j)

or
w>[φ(x, i)− φ(x, j)] > 0
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Notes

The number of weights is still same as one-vs-all, much less than
all-vs-all K(K-1)/2

Still account for all pairwise label preferences

Come with theoretical guarantees for generalization

Important idea that is applicable when we move to arbitrary structures
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Linear Models for Classification

“Linear” decision rule

ŷ = arg max
y∈Y

w>φ(x, y)

where φ : V × Y → Rd

Parameters: w ∈ Rd

What does this remind you of?
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MLE for Multinomial Logistic Regression

When we discussed log-linear language models, we transformed the
score into a probability distribution. Here, that would be

P(y |x) =
exp(w>φ(x, y))∑
y ′ exp(w>φ(x, y ′))

MLE can be rewritten as a maximization problem:

w∗ = arg max
w

∑
x,y

w>φ(x, y)︸ ︷︷ ︸
hope

− log
∑
y ′

exp(w>φ(x, y ′))︸ ︷︷ ︸
fear

Recall from language models:

Be wise and regularize!
Solve with batch or stochastic gradient methods
wi has an interpretation
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Log Loss for (x, y)

Another view is to minimize the negated log-likelihood, which is
known as “log loss”:

min
w

∑
x,y

log
∑
y ′

exp(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope

In the binary case, where the x-axis is the difference in scores between
correct and incorrect labels:

All loss functions are considered as upper-bound of “zero-one” loss (error)
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Log Sum Exp

Below, y-axis plots the log
∑

exp” part of the objective function (with
two labels), against x, assuming the other score is one of {8, 0, − 8}
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Hard Maximum

Why not use a hard max instead?
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Hinge Loss for (x, y)

Average log-loss

min
w

∑
x,y

log
∑
y ′

exp(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope

Hinge loss

min
w

∑
x,y

max
y ′

(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope

When two labels are tied, the function is not differentiable
But it’s still sub-differentiable. Solution: (stochastic) sub-gradient
descent!
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Compare Loss

min
w

∑
x,y

max
y ′

(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope

In binary case:

⇒ min
w

∑
x,y

max{0,−yw>x}

Any thoughts about negative sampling?
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Minimizing Hinge Loss: Perceptron

min
w

M∑
m=1

max
y ′

(w>φ(xm, y
′))−w>φ(xm, ym)

Stochastic subgradient descent on the above is called the perceptron
algorithm

For t = 1, . . . ,T

Pick it randomly from {1, . . . , n}
ŷit = arg maxy′ w

>φ(x, y ′)
w← w − η

(
w>φ(xit , ŷit )− w>φ(xit , yit )

)
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Error Costs

Suppose that not all mistakes are equally bad

E.g., false positives vs. false negatives in spam detection

Let cost(y ′, y) quantify the “badness” of substituting y ′ for correct
label y

Intuition: estimate the scoring function so that
score(y)− score(y ′) ∝ cost(y ′, y)(

max
y ′

(w>φ(x, y ′)) + cost(y , y ′)

)
−w>φ(x, y)
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General Remarks

Text classification: many problems, all solved with supervised learners

Lexicon features can provide problem-specific guidance

Naive Bayes, log-linear, and linear SVM are all linear methods that
tend to work reasonably well, with good features and
smoothing/regularization

Rumor: random forests are widely used in industry when performance
matters more than interpretability

Lots of papers about neural networks, though with hyper-parameter
tuning applied fairly to linear models, the advantage is not
clear (Yogatama et al. (2015))

Lots of work on feature design

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 19 / 39



Overview

1 Problem Definition

2 Generative vs. Discriminative Classification

3 General Linear Classification

4 Unsupervised Learning

5 EM Algorithm

6 Evaluation of Classification

7 Evaluation of Clustering
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Clustering

Clustering is an unsupervised learning method

Given items x1, . . . , xM ∈ Rd , the goal is to group them into
reasonable clusters

We also need a pairwise distance/similarity function between items,
and sometimes the desired number of clusters

When documents are represented by feature vectors, a commonly
used similarity measure is the cosine similarity

sim(x, x′) = cos(x, x′) =
x>x′

||x|| · ||x′||

This similarity has the nice property that document length is
implicitly normalized (so that a long document can be similar to a
short document)
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K -Means Clustering

1 Randomly choose K centers µ1, . . . ,µK

2 Repeat
3 Assign x1, . . . , xM to their nearest centers to obtain ŷm, respectively
4 Update µk = 1∑

m I (ŷm=k)

∑
m xmI (ŷm = k)

5 Until the clusters no longer change

Step 3 is equivalent to creating a Voronoi diagram under the current
centers

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html
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K -Means Clustering Remarks

K -means clustering is sensitive to the initial cluster centers

It is in fact an optimization problem with a lot of local optima

To be exact, k-means clustering is a special case of Gaussian Mixture
Model (GMM) when the covariance of the Gaussian components tends
to zero

It is of course sensitive to k too

Both should be chosen with care

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 23 / 39



Recall Naive Bayes Classifier: A Generative View

Both ym and
xm = (x1

m, . . . , x
d
m)T

are observed variables;
π and θk are
parameters

Naive Bayes from Class Conditional Unigram Model

For m = 1, . . . ,M

Choose ym ∼ Multinomial(ym|1,π)

Choose Nm =
∑d

j x
j
m ∼ Poisson(ξ)

For n = 1, . . . ,Nm

Choose v ∼ Multinomial(v |1,θ∗|ym ) =∏d
j=1(θj∗|ym )v=j

Alternative views

Choose xm ∼ Multinomial(X|Nm,θ∗|ym) =(
Nm

xm

)∏d
j=1(θj∗|ym)x

j
m

Choose xdm ∼ Binomial(X |Nm, θ
j
∗|ym) =(

Nm

x jm

)
(θj∗|ym)x

j
m(1− θj∗|ym)Nm−x jm
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Parameter Estimation (based on Multinomial)

Both ym and
xm = x1

m, . . . , x
d
m are

observed variables; π
and θk are parameters

Maximum likelihood of the training set:

J = log
∏M

m=1 Pπ,{θk}(xm, ym)

=
∑M

m=1 logPπ,{θk}(xm, ym)

=
∑M

m=1 logP(ym|π)P(xm|ym,θ∗|ym)

We can formulate a constrained optimization
problem

max J
s.t.

∑K
k=1 πk = 1∑d
j=1 θ

j
k = 1(k = 1, . . . ,K )

It’s easy to solve with Lagrange multiplier and arrive
at:

πk = |{ym=k}|
M

θjk =
∑

m,ym=k x
j
m∑

m,ym=k

∑d
j=1 x

j
m
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What if the documents are not labeled?

In naive Bayes, both ym and xm = (x1
m, . . . , x

d
m)T are observed variables; π

and θk are parameters

Figure: Native Bayes Figure: Mixture Model

However, in clustering problems, ym is not observed (labeled before feeding
into machine learning algorithm)
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Expectation Maximization (EM) Algorithm

EM might look like a heuristic method. However, it is not.

EM is guaranteed to find a local optimum of data log likelihood

Recall if we have complete data set {xm, ym}Mm=1 and denote
parameter set as Θ = {π, {θk}}, the likelihood estimation of native
Bayes is

JNB(Θ) = log
M∏

m=1

Pπ,{θk}(xm, ym) = logP({xm, ym}Mm=1|Θ)

However, now {ym}Mm=1 are not observed (labeled), so we treat them
as hidden variables

We instead maximize the marginal log likelihood:

J (Θ) = logP({xm}Mm=1|Θ)
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Maximizing the Marginal Log Likelihood

We optimize following objective function:

J (Θ) = logP({xm}Mm=1|Θ)

=
∑M

m=1 logP(xm|Θ)

=
∑M

m=1 log
∑K

y=1 P(xm, y |Θ)

=
∑M

m=1 log
∑K

y=1 P(y |Θ)P(xm|y ,Θ)

=
∑M

m=1 log
∑K

y=1 P(y |π)P(xm|y ,θ∗|y )

Compared to supervised learning:

JNB(Θ) = log
∏M

m=1 Pπ,{θk}(xm, ym)

=
∑M

m=1 logPπ,{θk}(xm, ym)

=
∑M

m=1 logP(ym|π)P(xm|ym,θ∗|ym)

It’s more complicated with a summation inside the log!

If we try to maximize the marginal log likelihood by setting the
gradient to zero, we will find that there is no longer a nice closed
form solution, unlike the joint log likelihood with complete data
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EM Algorithm: General Idea

EM is an iterative procedure to maximize the marginal log likelihood
J (Θ)

It constructs a concave, easy-to-optimize lower bound
J (Θ) ≥ Q(Θ,Θt), where Θ is the variable and Θt is the previous,
fixed, parameter

The lower bound has an interesting property Q(Θt ,Θt) = J (Θt)

Therefore the new parameter Θt+1 that maximizes Q(Θt ,Θ) is
guaranteed to have Q ≥ J (Θt). Since Q lower bounds J , we have
J (Θt+1) ≥ J (Θt)

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 29 / 39



Lower Bound Q(Θ,Θt)

The lower bound is obtained via Jensens inequality (concavity of log
function)

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

which holds if the pi ’s form a probability distribution
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Lower Bound Q(Θ,Θt) (Cont’d)

The lower bound is obtained via Jensens inequality (concavity of log
function)

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

which holds if the pi ’s form a probability distribution

Then the lower bound can be derived:

J (Θt) =
∑M

m=1 log
∑K

y=1 P(xm, y |Θt)

=
∑M

m=1 log
∑K

y=1 qxm,y (Θ)P(xm,y |Θt)
qxm,y (Θ)

≥
∑M

m=1

∑K
y=1 qxm,y (Θ) log P(xm,y |Θt)

qxm,y (Θ).
= Q(Θ,Θt)

where
∑K

y=1 qxm,y (Θ) = 1 is some distribution

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 31 / 39



E-step

M∑
m=1

log
K∑

y=1

qxm,y (Θ)
P(xm, y |Θt)

qxm,y (Θ)
≥

M∑
m=1

K∑
y=1

qxm,y (Θ) log
P(xm, y |Θt)

qxm,y (Θ)

To make the bound tight for a particular value of Θ, we need for the
step involving Jensens inequality in our derivation above to hold with
equality

For this to be true, we know it is sufficient that that the expectation

be taken over a constant-valued random variable P(xm,y |Θt)
qxm,y (Θ) = c

This is easily done by choosing qxm,y (Θ) ∝ P(xm, y |Θt)

Since
∑K

y=1 qxm,y (Θ) = 1, we have (considered as E-step)

qxm,y (Θ) =
P(xm, y |Θt)∑K
y=1 P(xm, y |Θt)

= P(y |xm,Θt)

The equation holds in the inequality iff qxm,y = P(y |xm,Θt)
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M-step

In M-step, we maximize the lower bound

Q(Θt ,Θ) =
∑M

m=1

∑K
y=1 qxm,y log P(xm,y |Θ)

qxm,y

=
∑M

m=1

∑K
y=1 qxm,y log

P(ym|π)P(xm|ym,θ∗|ym )

qxm,y

Now we can set the gradient of Q w.r.t. π and θk ’s to zero and
obtain a closed form solution

πk =
∑

m qxm,y

M

θjk =
∑

m qxm,yx
j
m∑

m

∑d
j=1 qxm,yx

j
m

Compared to naive Bayes:

πk = |{ym=k}|
M

θjk =
∑

m,ym=k x
j
m∑

m,ym=k

∑d
j=1 x

j
m
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EM Algorithm

Repeat

E-step: compute posterior of
hidden variables

qxm,y = P(y |xm,Θ)

M-step: parameter estimation
by maximizing the lower
bound

πk =
∑

m qxm,y

M

θjk =
∑

m qxm,y x
j
m∑

m

∑d
j=1 qxm,y x

j
m

Until the convergence of the
objective function

Randomly choose K centers
µ1, . . . ,µK

Repeat

Assign x1, . . . , xM to their
nearest centers to obtain ŷm,
respectively
Update µk =

1∑
m I (ŷm=k)

∑
m xmI (ŷm = k)

Until the clusters no longer
change

In practice, K -means is cheaper. We can run multiple times to find good
initialization to mixture models.
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Convergence of EM Algorithm

E-step: With qxm,y (Θ) = P(y |xm,Θt), the equation holds, which
leads

Q(Θt ,Θt) = J (Θt)

M-step: Since Θt+1 maximizes Q(Θt ,Θ), we have

Q(Θt ,Θt+1) ≥ Q(Θt ,Θt) = J (Θt)

On the other hand, Q is lower bound of J , we have:

J (Θt+1) ≥ Q(Θt ,Θt+1) ≥ Q(Θt ,Θt) = J (Θt)

This shows EM algorithm always increase the objective function (log
likelihood)

By iterating, we arrive at a local maximum of it
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A More General View of EM

EM is general and applies to joint probability models whenever some
random variables are missing

EM is advantageous when the marginal is difficult to optimize, but
the joint is easy

To be general, consider a joint distribution P(X ,Z |Θ), where X is the
collection of observed variables, and Z unobserved variables

The quantity we want to maximize is the marginal log likelihood

J (Θ) = logP(X |Θ) = log
∑
Z

P(X ,Z |Θ)

which we assume difficult to optimize
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A More General View of EM (Cont’d)

One can introduce an arbitrary distribution over hidden variables
Q(Z )

J (Θ) = logP(X |Θ) = log
∑

Z P(X ,Z |Θ)
=
∑

Z Q(Z ) logP(X |Θ)

=
∑

Z Q(Z ) log P(X |Θ)Q(Z)P(X ,Z |Θ)
P(X ,Z |Θ)Q(Z)

=
∑

Z Q(Z ) log P(X ,Z |Θ)
Q(Z) +

∑
Z Q(Z ) log P(X |Θ)Q(Z)

P(X ,Z |Θ)

=
∑

Z Q(Z ) log P(X ,Z |Θ)
Q(Z) +

∑
Z Q(Z ) log Q(Z)

P(Z |X ,Θ)

= F (Q,Θ) + KL[Q(Z )||P(Z |X ,Θ)]

Note F (Q,Θ) is the right hand side of Jensen’s inequality
If KL > 0, F (Q,Θ) is a lower bound of J (Θ)

First consider the maximization of F on Q with Θt fixed
F (Q,Θ) is maximized by Q(Z ) = P(Z |X ,Θt) since J (Θ) is fixed and
KL attends its minimum zero (E-Step)

Next consider the maximization of F on Θ with Q fixed as above
Note in this case F (Q,Θ) = Q(Θt ,Θ) (M-Step)
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Variations of EM

Generalized EM (GEM) finds Θ that improves, but not necessarily
maximizes, F (Q,Θ) = Q(Θ,Θt) in the M-step. This is useful when
the exact M-step is difficult to carry out. Since this is still coordinate
ascent, GEM can find a local optimum.

Stochastic EM: The E-step is computed with Monte Carlo sampling.
This introduces randomness into the optimization, but asymptotically
it will converge to a local optimum.

Variational EM: Q(Z ) is restricted to some easy-to-compute subset of
distributions, for example the fully factorized distributions
Q(Z ) =

∏
i Q(zi ). In general P(Z |X ,Θ), which might be intractable

to compute, will not be in this subset. There is no longer guarantee
that variational EM will find a local optimum.
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