Statistical Learning for Text Data Analytics Text Categorization 2: Clustering

Yangqiu Song

Hong Kong University of Science and Technology

yqsong@cse.ust.hk

Spring 2018

*Contents are based on materials created by Noah Smith, Xiaojin (Jerry) Zhu, Eric Xing, Vivek Srikumar, Dan Roth

- Noah Smith. CSE 517: Natural Language Processing https://courses.cs.washington.edu/courses/cse517/16wi/
- Xiaojin (Jerry) Zhu. CS 769: Advanced Natural Language Processing. http://pages.cs.wisc.edu/~jerryzhu/cs769.html
- Eric Xing. 10715 Advanced Introduction to Machine Learning. https://www.cs.cmu.edu/~epxing/Class/10715/lectures/ lecture1.pdf
- Vivek Srikumar. CS 6355 Structured Prediction. https: //svivek.com/teaching/structured-prediction/spring2018/
- Dan Roth. CS546: Machine Learning and Natural Language . http://l2r.cs.uiuc.edu/~danr/Teaching/CS546-16/

- Representation: language models, word embeddings, topic models
- Learning: supervised learning, unsupervised learning, semi-supervised learning, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1

Yangqiu Song (HKUST)

Problem Definition

- 2 Generative vs. Discriminative Classification
- 3 General Linear Classification
- 4 Unsupervised Learning
- 5 EM Algorithm
- 6 Evaluation of Classification
 - 7 Evaluation of Clustering

• Accuracy:

$$\begin{aligned} A(f) &= P(f(\mathbf{X}) = Y) \\ &= \sum_{\mathbf{x} \in \mathcal{V}, y \in \mathcal{Y}} P(\mathbf{X} = \mathbf{x}, Y = y) \cdot \begin{cases} 1 & \text{if } f(\mathbf{x}) = y \\ 0 & \text{otherwise} \end{cases} \\ &= \sum_{\mathbf{x} \in \mathcal{V}, y \in \mathcal{Y}} P(\mathbf{X} = \mathbf{x}, Y = y) I(f(\mathbf{x}) = y) \end{aligned}$$

where P is the true distribution over data

- Error is 1 A(f)
- This is estimated using a test dataset $\langle \bar{\mathbf{x}}_1, \bar{y}_1 \rangle, \dots, \langle \bar{\mathbf{x}}_m, \bar{y}_m \rangle$:

$$\hat{A}(f) = \frac{1}{m} \sum_{i=1}^{m} I(f(\bar{\mathbf{x}}_i) = \bar{y}_i)$$

.∃ >

- Class imbalance: if P(L = not spam) = 0.99, then you can get $\hat{A} \approx 0.99$ by always guessing "not spam"
- Relative importance of classes or cost of error types
- Variance due to the test data

Precision

• Fraction of predicted positive documents that are indeed positive, i.e., P(human label = 1 | prediction = 1)

Recall

 Fraction of positive documents that are predicted to be positive, i.e., P(prediction = 1 | human label = 1)

• F-1 Score:

 $F_1 = 2 \cdot \frac{\text{precession} \cdot \text{recall}}{\text{precession} + \text{recall}}$

Spring 2018 7 / 17

• = • •

Evaluation in the Multi-Class Case

- Accuracy
- F1
 - Let TP_t , FP_t , FN_t denote the true-positives, false-positives, and false-negatives for the *t*-th label in label set \mathcal{L} respectively
 - Micro-averaged $F_1 = \frac{2PR}{P+R}$ where $P = \frac{\sum_{t \in \mathcal{L}} TP_t}{\sum_{t \in \mathcal{L}} TP_t + FP_t}$ and $R = \frac{\sum_{t \in \mathcal{L}} TP_t}{\sum_{t \in \mathcal{L}} TP_t + FN_t}$
 - Macro-averaged $F_1 = \frac{1}{|\mathcal{L}|} \sum_{t \in \mathcal{L}} \frac{2P_t R_t}{P_t + R_t}$ where $P_t = \frac{TP_t}{TP_t + FP_t}$ and $R_t = \frac{TP_t}{TP_t + FN_t}$

Actual/ Predicted	Class 1	2	3	4	5	6	7	8	9	10	Total	Recall
Class 1	9.06		0.07	0.05	0.01	0.03	0.06	0.59	0.01	0.14	10	90.60
Class 2		8.20			0.52	0.04	0.30		0.53	0.42	10	82.00
Class 3	0.03		9.52	0.03	0.01	0.02	0.01	0.15	0.02	0.22	10	95.20
Class 4	0.01	0.01	0.01	9.01	0.13	0.12	0.52	0.10	0.05	0.06	10	90.10
Class 5		0.48	0.01	0.05	2.67	1.87	1.40		2.63	0.90	10	26.70
Class 6		0.11			0.86	7.75	0.56		0.10	0.62	10	77.50
Class 7	0.02	0.18		0.32	1.47	1.50	3.66	0.11	2.08	0.67	10	36.60
Class 8	0.20		0.05	0.01			0.02	9.70		0.03	10	97.00
Class 9		0.39	0.01		1.21	0.11	0.42		6.84	1.02	10	68.40
Class 10		0.24	0.13	0.01	0.95	1.01	0.43	0.01	1.85	5.37	10	53.70
Total	9.32	9.61	9.80	9.48	7.83	12.45	7.38	10.66	14.11	9.45	100	
Precision	97.21	85.33	97.14	95.04	34.10	62.25	49.59	90.99	48.48	56.83		

• *k*-fold cross-validation

- Partition all training data into k equal size disjoint subsets
- Leave one subset for validation and the other k-1 for training
- Repeat step (2) k times with each of the k subsets used exactly once as the validation data

- Suppose we have two classifiers f_1 and f_2
- Is f_1 better? The "null hypothesis," denoted H_0 , is that it isn't. But if $\hat{A}(f_1) \gg \hat{A}(f_2)$, we are tempted to believe otherwise
- How much larger must $\hat{A}(f_1)$ be than $\hat{A}(f_2)$ to reject H_0 ?
- Frequentist view: how (im)probable is the observed difference, given $H_0 = true$?
- Caution: statistical significance is neither necessary nor sufficient for research significance or practical usefulness!

- The null hypothesis: $A(f_1) = A(f_2)$
- Pick significance level α , an "acceptably" high probability of incorrectly rejecting H_0
- Calculate the test statistic, k (explained in the next slide)
- Calculate the probability of a more extreme value of k, assuming H₀ is true; this is the *p*-value
- Reject the null hypothesis if the *p*-value is less than α

The *p*-value is P(this observation $|H_0|$ is true), not the other way around

McNemar's Test: Details

- Assumptions: independent (test) samples and binary measurements. Count test set error patterns:
- The test is applied to a 2 × 2 contingency table, which tabulates the outcomes of two tests on a sample of *n* subjects

	f_1 is incorrect	f_1 is correct	
f_2 is incorrect	а	b	a + b
f_2 is correct	С	d	$n \cdot \hat{A}(f_1) = c + d$
	a + c	$n \cdot \hat{A}(f_1) = b + d$	n

If $A(f_1) = A(f_2)$, then b and c are each distributed according to Binomial $(k, b + c, \frac{1}{2})$ (The probability of getting k successes in b + c trials) test statistic $k = \min(b, c)$

$$p - \text{value} = 2\sum_{0}^{k} \text{Binomial}(k; b + c, \frac{1}{2}) = \frac{1}{2^{b+c-1}}\sum_{k=0}^{k} \begin{pmatrix} b+c \\ j \\ j \\ j \end{pmatrix}_{k=0}$$

- Different tests make different assumptions
- Sometimes we calculate an interval that would be "unsurprising" under H_0 and test whether a test statistic falls in that interval (e.g., t-test and Wald test)
- In many cases, there is no closed form for estimating p-values, so we use random approximations (e.g., permutation test and paired bootstrap test)
- If you do lots of tests, you need to correct for that
- Read lots more in (Smith (2011)), appendix B

Metrics for Clustering

 Purity between two random variables CAT (category label) and CLS (cluster label) is defined as:

Purity (CAT; CLS) =
$$\frac{1}{n} \sum_{i} \max n_{ij}$$
,

- *n* is the number of documents
- $n_{i,j}$ is the number of documents in category *i* as well as in cluster *j*

▶ Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority class and number of members of the majority class for the three clusters are: x, 5 (cluster 1); o, 4 (cluster 2); and \diamond , 3 (cluster 3). Purity is $(1/17) \times (5+4+3) \approx 0.71$.

Sometimes Hungarian algorithm is used to match category and cluster $\frac{1}{n} \max \sum_{i} n_{i,f(i \to j)}$

Yangqiu Song (HKUST)

Learning for Text Analytics

Spring 2018 14 / 17

Metrics for Clustering

- In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables.
- More specifically, it quantifies the "amount of information" (in units such as Shannons, more commonly called bits) obtained about one random variable, through the other random variable.
- NMI between two random variables CAT (category label) and CLS (cluster label) is defined as:

NMI(CAT; CLS) =
$$\frac{I(CAT; CLS)}{\sqrt{H(CAT)H(CLS)}}$$
,

where I(CAT; CLS) is the mutual information between CAT and CLS. The entropies H(CAT) and H(CLS) are used for normalizing the mutual information to be in the range of [0, 1].

Yangqiu Song (HKUST)

Metrics for Clustering

• In practice, we made use of the following formulation to estimate the NMI score (Strehl and Ghosh (2002)):

$$\mathsf{NMI} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{k} n_{i,j} \log\left(\frac{n \cdot n_{i,j}}{n_i \cdot n_j}\right)}{\sqrt{\left(\sum_{i} n_i \log\frac{n_i}{n}\right) \left(\sum_{j} n_j \log\frac{n_j}{n}\right)}},$$

- *n* is the number of documents
- n_i and n_i denote the number of documents in category i and cluster j
- $n_{i,j}$ is the number of documents in category *i* as well as in cluster *j*
- The NMI score is 1 if the clustering results perfectly match the category labels, and the score is 0 if data are randomly partitioned.
- The higher the NMI score, the better the clustering quality.

- McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. *Psychometrika*, 12(2):153–157.
- Smith, N. A. (2011). *Linguistic Structure Prediction*. Synthesis Lectures on Human Language Technologies. Morgan and Claypool.
- Strehl, A. and Ghosh, J. (2002). Cluster ensembles A knowledge reuse framework for combining multiple partitions. *Journal of Machine Learning Research*, 3:583–617.