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Reference Content

Noah Smith. CSE 517: Natural Language Processing
https://courses.cs.washington.edu/courses/cse517/16wi/

Julia Hockenmaier. CS447: Natural Language Processing.
http://courses.engr.illinois.edu/cs447

Hongning Wang. CS6501 Text Mining. http://www.cs.virginia.

edu/~hw5x/Course/Text-Mining-2015-Spring/_site/

Dan Jurafsky. cs124/ling180: From Languages to Information.
http://web.stanford.edu/class/cs124/

Dan Klein. CS 288: Statistical Natural Language Processing.
https://people.eecs.berkeley.edu/~klein/cs288/sp10/
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Reference Content (Cont’d)

Slav Petrov. Statistical Natural Language Processing.
https://cs.nyu.edu/courses/fall16/CSCI-GA.3033-008/

Chris Manning. CS 224N/Ling 237. Natural Language Processing.
https://web.stanford.edu/class/cs224n/

Yejin Choi. CSE 517 (Grad) Natural Language Processing.
http://courses.cs.washington.edu/courses/cse517/15wi/

Michael Collins. COMS W4705: Natural Language Processing.
www.cs.columbia.edu/~mcollins/courses/nlp2011/
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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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Overview

1 Basic Concepts of Probability

2 Language Models

3 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

4 Evaluation
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Language Model Evaluation

Train the models on the same training set

Parameter tuning can be done by holding off some training set for
validation

Test the models on an unseen test set

This data set must be disjoint from training data

Language model A is better than model B

If A assigns higher probability to the test data than B
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Measuring Model Quality

The goal isn’t to pound out fake sentences!

Obviously, generated sentences get “better” as we increase the model
order
More precisely: using ML estimators, higher order is always better
likelihood on train, but not test

What we really want to know is:

Will our model prefer good sentences to bad ones?
Bad 6= ungrammatical!
Bad ≈ unlikely
Bad = sentences that our model really likes but aren’t the correct
answer
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Measuring Model Quality (Cont’d)

The Shannon Game (by Claude Shannon, 1916–2001):

How well can we predict the next word?

grease 0.5
sauce 0.4
dust 0.05

When I eat pizza, I wipe off the ...
mice 0.0001
...
the 1e − 100

Unigrams are terrible at this game.

How good are we doing?

Compute per word log likelihood (N words, M test sentences Si ):

An intuitive way: l = 1
N

∑N
i log P(Si )
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Perplexity

Standard evaluation metric for language models

A function of the probability that a language model assigns to a data
set
Rooted in the notion of cross-entropy in information theory
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Perplexity

Perplexity of a probability distribution

2H(P) = 2−
∑

x P(x) log2 P(x)

H(P): entropy
Perplexity of a random variable X may be defined as the perplexity of
the distribution over its possible values x
In the special case where P models a uniform distribution over k
discrete events, its perplexity is k

Perplexity of a probability model

2H(P̂,Q) = 2−
∑

x P̂(x) log2 Q(x)

H(P̂,Q): cross entropy
P̂ denotes the empirical distribution of the test sample (i.e.,
P̂(x) = n/N if x appeared n times in the test sample of size N)
Q: a proposed probability model
One may evaluate Q by asking how well it predicts a separate test
sample x1, x2, ..., xN also drawn from unknown P
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The Shannon Game Intuition for Perplexity

How hard is the task of recognizing digits “0,1,2,3,4,5,6,7,8,9” at
random

Perplexity 10

How hard is recognizing (30,000) names at random

Perplexity 30,000

If a system has to recognize

Operator (1 in 4)
Sales (1 in 4)
Technical Support (1 in 4)
30,000 names (1 in 120,000 each)
Perplexity is 53

Perplexity is weighted equivalent branching factor
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Perplexity as Branching Factor

Language with higher perplexity means the number of words
branching from a previous word is larger on average

The difference between the perplexity of a language model and the
true perplexity of the language is an indication of the quality of the
model
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Perplexity Per Word for Language Models

Given a test corpus with N tokens, w1, . . . ,wN , and an n-gram model
P(wi |wi1, . . . ,win+1) the perplexity PP(w1, . . . ,wN) is defined as
follows (Brown et al. (1992)):

The inverse of the likelihood of the test set as assigned by the
language model, normalized by the number of words

PP(w1, . . . ,wN) = P(w1, . . . ,wN)−
1
N

= N

√
1

P(w1,...,wN)

= N

√
1∏N

i=1 P(wi |w1,...,wi−1)
(chain rule)

= N

√
1∏N

i=1 P(wi |wi−1,...,wi−n+1)
(n − gram model)

Minimizing perplexity = maximizing probability!

Language model LM1 is better than LM2 if LM1 assigns lower
perplexity (= higher probability) to the test corpus w1, . . . ,wN

Note: the perplexity of LM1 and LM2 can only be directly compared
if both models use the same vocabulary.
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Practical Issues

Since language model probabilities are very small, multiplying them
together often yields to underflow

It is often better to use logarithms instead, so replace

PP(w1, . . . ,wN) = N

√
1∏N

i=1 P(wi |wi−1, . . . ,wi−n+1)

with

PP(w1, . . . ,wN) = exp

(
− 1

N

N∑
i=1

log P(wi |wi−1, . . . ,wi−n+1)

)
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An Experiment

Models

Unigram, bigram, trigram models (with proper smoothing)

Training data

38M words of WSJ text (vocabulary: 20K types)

Test data

1.5M words of WSJ text

Results

Unigram Bigram Trigram

Perplexity 962 170 109

Conclusion: The bigram is much better than the unigram, and the
trigram is even better
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What Actually Works?

Trigrams and beyond

Unigrams, bigrams generally useless for speech or machine translation
Trigrams much better (when there’s enough data)
4-, 5-grams really useful in MT, but not so much for speech

Discounting

Absolute discounting, Good-Turing, held-out estimation, Witten-Bell,
etc.

See Chen and Goodman (1996) reading for tons of graphs
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Data vs. Method?

Having more data is better...

...but so is using a better estimator

Another issue: n > 3 has huge costs in speech recognizers
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Tons of Data?

Tons of data closes gap, for extrinsic MT evaluation
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Further Reading

Manning et al. (2008). Introduction to information retrieval. Chapter
12: Language models for information retrieval.

Jurafsky and Martin (2017). Speech and Language Processing.
Chapter 4: N-Grams.
https://web.stanford.edu/~jurafsky/slp3/

Chen and Goodman (1996). An empirical study of smoothing
techniques for language modeling.

Collins (2011). Course notes for COMS w4705: Language modeling,
2011. http://www.cs.columbia.edu/~mcollins/courses/

nlp2011/notes/lm.pdf

Zhu (2010). Course notes for cs769: Language modeling, 2011.
http://pages.cs.wisc.edu/~jerryzhu/cs769/lm.pdf
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