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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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1 Hidden Markov Models
Representation
Learning
Inference

2 Conditional Models and Local Classifiers
Conditional Models for Predicting Sequences
Log-linear Models for Multiclass Classification
Maximum Entropy Markov Models

The Label Bias Problem

3 Global Models
Conditional Random Fields
Structured Perceptron for Sequences
Structural Support Vector Machine
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The Next-state Model

P(yn|yn−1, yn−2, . . . , xn, xn−1, xn−2, . . .) = P(yn|yn−1, xn)

This assumption lets us write the conditional probability of the output
as

P(y1:N |x1:N) =
∏
n

P(yn|yn−1, xn)
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Maximum Entropy Markov Model (MEMM)

Goal: Compute P(y1:N |x1:N ,w) =
∏

n P(yn|yn−1, x1:N) where

P(yn|yn−1, x1:N) ∝ exp (w>φ(x, n, yn, yn−1))
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But ... Local Classifiers → Label Bias Problem

Recall: the independence assumption (“Next-state” classifiers are
locally normalized)

P(yn|yn−1, yn−2, . . . , xn, xn−1, xn−2, . . .) = P(yn|yn−1, xn)
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But ... Local Classifiers → Label Bias Problem

The robot wheels Fred round

The path scores are the same
Even if the word Fred is never observed as a verb in the data, it will be
predicted as one
The input Fred does not influence the output at all
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Label Bias

States with a single outgoing transition effectively ignore their input

States with lower-entropy next states are less influenced by observations

Why?

Because each the next-state classifiers are locally normalized
If a state has fewer next states, each of those will get a higher
probability mass

and hence preferred

Surprisingly doesn’t affect some tasks

E.g., POS tagging
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Summary: Local Models for Sequences

Conditional models

Use rich features in the mode

Possibly suffer from label bias problem
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So Far...

Hidden Markov models

Pros: Decomposition of total probability with tractable
Cons: Doesn’t allow use of features for representing inputs

Also, generative model is not really a downside, but we may get better
performance with conditional models if we care only about predictions

Local, Conditional Markov Models

Pros: Conditional model, allows features to be used
Cons: Label bias problem
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Global Models

Train the predictor globally

Instead of training local decisions independently

Normalize globally

Make each edge in the model undirected
Not associated with a probability, but just a “score”

Recall the difference between local vs. global for multiclass
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HMM vs. A Local Model vs. A Global Model
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Conditional Random Field

Each node is a random variable

We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the
unobserved variables, given the observed
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Conditional Random Field

Each node is a random variable

We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the
unobserved variables, given the observed

Each clique is associated with a score
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Multi-class Classification as a Special Case

Rewrite input features and weight vector

Define a feature vector for label i being associated to input x
Stack all weight vectors into an nK -dimensional vector

This is called the Kesler construction
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Conditional Random Field

Each node is a random variable

We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the
unobserved variables, given the observed

Each clique is associated with a score

We can put arbitrary features, as with local conditional models
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Conditional Random Field

Each node is a random variable
We observe some nodes and the rest are unobserved
The goal: To characterize a probability distribution over the
unobserved variables, given the observed

Each clique factor is associated with a score
We can put arbitrary features, as with local conditional models
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Conditional Random Field

Each node is a random variable

We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the
unobserved variables, given the observed

A different factorization: Recall decomposition of structures into
parts. Same idea
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Conditional Random Field for Sequences

The conditional probability is

P(y1:N |x1:N) =
1

Z

∏
n

exp(w>φ(x1:N , yn, yn−1))

where Z is a normalization constant

Z =
∑
y1:N

∏
n

exp(w>φ(x1:N , yn, yn−1)
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CRF: A Different View

Input: x1:N , Output: y1:N , both sequences (for now)

Define a feature vector for the entire input and output sequence:
φ(x1:N , y1:N)

Define a giant log-linear model, P(y1:N |x1:N) parameterized by w

P(y1:N |x1:N) = 1
Z

∏
n exp(w>φ(x1:N , yn, yn−1))

∝ exp
(
w>
∑

n φ(x1:N , yn, yn−1)
)

Just like any other log-linear model, except

Space of y is the set of all possible sequences of the correct length
Normalization constant sums over all sequences
In an MEMM, probabilities were locally normalized

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 23 / 52



Global Features

The feature function decomposes over the sequence

φ(x1:N , y1:N) =
∑
n

φ(x1:N , yn, yn−1)
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CRF Prediction

Given

P(y1:N |x1:N) =
1

Z
exp

(
w>φ(x1:N , y1:N)

)
Goal: To predict most probable sequence y1:N given an input x1:N

arg maxy1:N P(y1:N |x1:N) = arg maxy1:N exp w>φ(x1:N , y1:N)
= arg maxy1:N w>φ(x1:N , y1:N)

The score decomposes as w>φ(x1:N , y1:N) = w>
∑

n φ(x1:N , yn, yn−1)

So we do prediction via Viterbi (with sum instead of product)

score1(y1) = w>
∑
n

φ(x1:N , y1)

scoren(yn) = max
yn−1

(w>φ(x1:N , yn, yn−1)+scoren−1(yn−1))
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Training a Chain CRF

Input:

Dataset with labeled sequences: D = {x(i)1:Ni
, y

(i)
1:Ni
}

A definition of the feature function

How do we train?

Maximize the (regularized) log-likelihood

max
w
−λ

2
w>w +

∑
i

logP(y
(i)
1:Ni
|x(i)1:Ni

,w)
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Training with Inference

Given
max

w
−λ

2
w>w +

∑
i

logP(y
(i)
1:Ni
|x(i)1:Ni

,w)

and
P(y1:N |x1:N) =

1

Z
exp

(
w>φ(x1:N , y1:N)

)
Many methods for training

Numerical optimization
Can use a gradient or hessian based method

Simple gradient ascent

w← w +
∑
i

φ(x
(i)
1:Ni

, y
(i)
1:Ni

)−
∑
ŷ1:N

P(ŷ1:N |x
(i)
1:Ni

,w)φ(x
(i)
1:Ni

, ŷ1:N)


Red part: Training involves inference!

A different kind than what we have seen so far
Summing over all sequences is just like Viterbi (with summation
instead of maximization)
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CRF Summary

An undirected graphical model

Decompose the score over the structure into a collection of factors
Each factor assigns a score to assignment of the random variables it is
connected to

Training and prediction

Final prediction via arg maxy1:N w>φ(x1:N , y1:N)
Train by maximum (regularized) likelihood

Relation to other models

Effectively a linear classifier
A generalization of logistic regression to structures
An instance of Markov Random Field, with some random variables
observed

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 28 / 52



Overview

1 Hidden Markov Models
Representation
Learning
Inference

2 Conditional Models and Local Classifiers
Conditional Models for Predicting Sequences
Log-linear Models for Multiclass Classification
Maximum Entropy Markov Models

The Label Bias Problem

3 Global Models
Conditional Random Fields
Structured Perceptron for Sequences
Structural Support Vector Machine

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 29 / 52



HMM is also a Linear Classifier

Consider logP(x1:N , y1:N) =
∑

n logP(yn|yn−1) + P(xn|yn)

logP(x1:N , y1:N) is linear scoring function w>φ(x1:N , y1:N)
w: parameters of the model
φ(x1:N , y1:N): properties of this output and the input

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 30 / 52



Towards Structured Perceptron

HMM is a linear classifier

Can we treat it as any linear classifier for training?
If so, we could add additional features that are global properties

As long as the output can be decomposed for easy inference

The Viterbi algorithm calculates max w>φ(x1:N , y1:N)

Viterbi only cares about scores to structures (not necessarily
normalized)

We could push the learning algorithm to train for un-normalized
scores

If we need normalization, we could always normalize by exponentiating
and dividing by Z
That is, the learning algorithm can effectively just focus on the score of
y1:N for a particular x1:N
Train a discriminative model instead of the generative one!
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Structured Perceptron Algorithm

Given a training set D = {x(i)1:N , y
(i)
1:N}

(In practice, good to shuffle data before running)

Initialize w = 0

For epoch = 1, . . . ,T :

(T is a hyperparameter to the algorithm)
For each training example (x1:N , y1:N) ∈ D

Predict y ′1:N = arg maxy′ w>φ(x1:N , y
′
1:N)

(Inference in the training loop)
If y ′1:N 6= y1:N , update w← w + η(φ(x1:N , y1:N)− φ(x1:N , y

′
1:N))

Return w

Prediction: arg maxy = w>φ(x1:N , y1:N)
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Notes on Structured Perceptron

Mistake bound for separable data, just like perceptron

In practice, use averaging for better generalization

Initialize a = 0
After each step, whether there is an update or not, a← a + w

Note, we still check for mistake using w not a

Return a at the end instead of w

Global update

One weight vector for entire sequence (not for each position)
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CRF vs. Structured Perceptron

Stochastic gradient descent update for CRF: expectation vs max

w← w + η(φ(x1:Ni
, y1:Ni

)−
∑
ŷ1:N

P(ŷ1:N |x1:Ni
,w)φ(x1:Ni

, ŷ1:N))

w← w + η(φ(x1:Ni
, y1:Ni

)− EP(ŷ1:N |x1:Ni ,w)[φ(x1:Ni
, ŷ1:N)])

Structured perceptron

w← w + η(φ(x1:N , y1:N)− φ(x1:N , y
′
1:N))

where y ′1:N = arg maxy ′ w
>φ(x1:N , y

′
1:N)

Caveat: Adding regularization will change the CRF update, averaging
changes the perceptron update
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The lay of the land

HMM: A generative model, assigns probabilities to sequences

Structured Perceptron/Structured
SVM

Conditional Random field

Hidden Markov Models are actually
just linear classifiers

Model probabilities via exponential
functions. Gives us the log-linear
representation

Dont really care whether we are
predicting probabilities. We are
assigning scores to a full output for a
given input (like multiclass)

Log-probabilities for sequences for a
given input

Generalize algorithms for linear
classifiers. Sophisticated models that
can use arbitrary features

Learn by maximizing likelihood.
Sophisticated models that can use
arbitrary features

Applicable beyond sequences. Eventually, similar objective minimized with
different loss functions
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Recall: Binary SVM

Functional margin γ(i) = y (i)(w>x(i) + b)

If y (i) = 1, we want w>x(i) + b to be a large positive number
If y (i) = −1, we want w>x(i) + b to be a large negative number
If y (i)(w>x(i) + b) > 0, then our prediction on this example is correct
If we replace (w, b) with (2w, 2b), it does not change the decision

So it makes more sense to impose some sort of normalization condition
such as that ||w||2 = 1

The functional margin of a dataset is defined as the smallest of the
function margins of individual exmaples

γ = min
i
γ(i)
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Recall: Binary SVM (Cont’d)

Geometric margin
The points lie on the decision boundary satisfy the equation
w>x + b = 0
The points lie on the margin satisfy w>(x− γ w

||w|| ) + b = 0

Solving for γ yields

γ =
w>x + b

||w||
=

(
w

||w||

)>

x +
b

||w||
If ||w|| = 1, then the functional margin equals the geometric margin
The geometric margin is invariant to rescaling of the parameters

We replace w with 2w and b with 2b, then the geometric margin does
not change
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Recall: Binary SVM (Cont’d)

To maximize geometric margin, we can pose the following
optimization problem

maxγ,w,b γ

s.t. y (i)(w>x(i) + b) ≥ γ
||w|| = 1

The constraint ||w|| = 1 is non-convex. So we convert it as following
nicer one maxγ,w,b

γ
||w||

s.t. y (i)(w>x(i) + b) ≥ γ
Note that we can add an arbitrary scaling constraint on w and b
without changing anything
We introduce the scaling constraint that the functional margin of w
and b with respect to the training set must be 1:

minγ,w,b
1
2 ||w||

2

s.t. y (i)(w>x(i) + b) ≥ 1

where ||w||2 makes it easier (convex) for optimization and remain the
same optimization problem
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Recall: Binary SVM (Cont’d)

SVM optimizes

minγ,w,b
1
2 ||w||

2

s.t. y (i)(w>x(i) + b) ≥ 1

With Lagrange multiplier, a equivalent formulation is

1

2
||w||2 + C

∑
i

max(0, 1− y (i)(w>x(i) + b))

where max(0, 1− y(w>x + b)) is called hinge loss

As a comparison, max(0,−y(w>x + b)) is called perceptron loss
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Compare losses
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Multiclass SVM in the Separable Case

For dataset with K classes, our optimization problem is

minγ,w
1
2

∑K
k ||wk ||2

s.t. w>
y (i)x

(i) −w>k x(i) ≥ 1 ∀i , k 6= y (i)

The score for the true label is higher than the score for any other
label by 1
With Kesler construction, we have

minγ,w
1
2 ||w||

2

s.t. w>(φ(x(i), y (i))− φ(x(i), k)) ≥ 1 ∀i , k 6= y (i)
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Structural SVM: A First Attempt

Suppose we have some definition of a structure (a factor graph)

And feature definitions for each “part” p as φp(x, yp)
Remember: we can talk about the feature vector for the entire
structure

Features sum over the parts

φ(x, y) =
∑

p∈parts(x)

φp(x, yp)

We also have a dataset {x(i), y(i)}
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Structural SVM: A First Attempt

What do we want from training (following the multiclass idea)?

For each example,

The annotated structure y gets the highest score among all structures
The structure y gets a score of at least one more than any other

w>φ(x, y) ≥ w>φ(x, y′) + 1 ∀y′ 6= y
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Structural SVM: A First Attempt

Goal

maximize margin
s.t. score for gold structure ≥ score for other structure + 1

for every training example

Corresponding to

minw
1
2w>w

s.t. w>φ(x(i), y(i)) ≥ w>φ(x(i), y′) + 1 ∀y′ 6= y(i)

Problem:

Structure B has is more wrong, but this formulation will be happy if
both A ans B are scored one less than gold!

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 45 / 52



Structural SVM: Second Attempt

First attempt

minw
1
2w>w

s.t. w>φ(x(i), y(i)) ≥ w>φ(x(i), y′) + 1 ∀y′ 6= y(i)

Introduce Hamming distance between structures

minw
1
2w>w

s.t. w>φ(x(i), y(i)) ≥ w>φ(x(i), y′) + ∆(y′, y(i)) ∀y′ 6= y(i)

where ∆(y′, y(i)) is defined as Hamming distance between structures
The Hamming distance between:

“karolin” and “kathrin” is 3.
“karolin” and “kerstin” is 3.
1011101 and 1001001 is 2.
2173896 and 2233796 is 3.

Intuition
Structures that are more different from the true structure should be
scored much lower
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Structural SVM: Third Attempt

Problem? What if the data is not separable?

What if these constraints are not satisfied for any w for a given
dataset?

Slack variable for each example ξi , must be positive

minw,ξi
1
2w>w + C

∑
i ξi

s.t. w>φ(x(i), y(i)) ≥ w>φ(x(i), y′) + ∆(y′, y(i))− ξi ∀y′ 6= y(i)

ξi ≥ 0

Slack variables allow some examples to be misclassified

Minimizing the slack forces this to happen as few times as possible

An equivalent formulation

min
w

1

2
w>w+C

∑
i

max
y′

(
w>φ(x(i), y′) + ∆(y′, y(i))−w>φ(x(i), y(i))

)
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Comments

Other slightly different formulations exist

Generally same principle

Multiclass is a special case of structure

Structural SVM strictly generalizes multiclass SVM

Can be seen as minimizing structured version of hinge loss

Learning as optimization
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Broader Picture: Learning as Loss Minimization

Collect some annotated data. More is generally better

Pick a hypothesis class (also called model)

Decide how the score decomposes over the parts of the output

Choose a loss function

Decide on how to penalize incorrect decisions

Learning = minimize empirical risk + regularizer

Typically an optimization procedure needed here
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Structured Classifiers: Different Learning Objectives

Structural SVM

min
w

1

2
w>w+C

∑
i

max
y′

(
w>φ(x(i), y′) + ∆(y′, y(i))−w>φ(x(i), y(i))

)
CRF: maxw−λ

2w>w +
∑

i logP(y
(i)
1:Ni
|x(i)1:Ni

,w)

max
w
−λ

2
w>w +

∑
i

w>φ(x
(i)
1:N , y

(i)
1:N)− log

∑
y ′1:N

(
w>φ(x

(i)
1:N , y

′
1:N)

)
min

w

λ

2
w>w +

∑
i

log
∑
y ′1:N

(
w>φ(x

(i)
1:N , y

′
1:N)

)
−w>φ(x

(i)
1:N , y

(i)
1:N)


Structured Perceptron

min
w

C
∑
i

max
y′

(
w>φ(x(i), y′)−w>φ(x(i), y(i))

)
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Further Reading

Ng (2017). CS229 Lecture notes: Support Vector Machines.
http://cs229.stanford.edu/notes/cs229-notes3.pdf

Punyakanok and Roth (2000). The Use of Classifiers in Sequential
Inference.

McCallum et al. (2000). Maximum Entropy Markov Models for
Information Extraction and Segmentation.

Lafferty et al. (2001). Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data.

Taskar et al. (2003). Max-Margin Markov Networks.

Collins (2011). Course notes for COMS w4705: Log-linear models,
MEMMs, and CRFs, 2011.
http://www.cs.columbia.edu/~mcollins/crf.pdf

Smith (2004). Log-linear models, 2004. https://homes.cs.

washington.edu/~nasmith/papers/smith.tut04.pdf
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