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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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Overview

1 Neural Language Models

2 Extensions

3 Evaluation
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Quick Review

A language model is a probability distribution over V† = V ∩ ∅
Typically P decomposes into probabilities P(xi |hi ). For n-gram
language models, to reduce notation confusion, we set:

n-gram: hi are (n − 1) previous symbols 〈wi−1, . . . ,wi−n+1〉; estimate
by counting and normalizing (with smoothing)
log-linear: featurized representation of 〈hi , xi 〉; estimate iteratively by
gradient descent

Today: neural language models
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Neural Network: Definitions
Warning: there is no widely accepted standard notation!

A feedforward neural network nν is defined by:

function family that maps parameter values to functions of the form
Rdin → Rdout ; typically:

Non-linear
Differentiable with respect to its inputs
“Assembled” through a series of affine transformations and
non-linearities, composed together
Symbolic/discrete inputs handled through lookups

Parameter values ν

Typically a collection of scalars, vectors, and matrices
We often assume they are linearized into RD
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A Couple of Useful Functions

Softmax: Rk → Rk

〈x1, x2, . . . , xk〉 7→

〈
ex1∑k
j=1 e

xj
,

ex2∑k
j=1 e

xj
, . . . ,

exk∑k
j=1 e

xj

〉
tanh: R→ [−1, 1]

x 7→ ex − e−x

ex + e−x

Generalized to be elementwise, so that it maps Rk → [−1, 1]k

Others include: ReLUs, logistic sigmoids, PReLUs, ...
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“One Hot” Vectors

Arbitrarily order the words in V, giving each an index in {1, . . . ,V }

Let ei ∈ RV contain all zeros, with the exception of a 1 in position i

This is the “one hot” vector for the ith word in V

ei =



0
0
...
0
1
0
...
0
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Feedforward Neural Network Language Model
Bengio et al. (2003)

Define the n-gram probability as follows:

P(〈v1, . . . , vV 〉|〈h1, . . . , hn−1〉) = nν(〈v1, . . . , vV 〉|〈eh1 , . . . , ehn−1〉) =

softmax

(
b
V

+
n−1∑
i=1

e>hi
V

M
V × d

Ai
d × V

+ W
V × H

tanh

(
u
H

+
n−1∑
i=1

e>hi
V

M
V × d

Ti
d × H

))
where 〈h1, . . . , hn−1〉 are (n − 1) previous symbols
〈wi−1, . . . ,wi−n+1〉, ehi ∈ RV is a one hot vector and H is the
number of “hidden units” in the neural network (a “hyperparameter”)

Parameters in neural network nν
M ∈ RV×d : “embeddings” (row vectors), one for every word in V
Forward NN parameters: b ∈ RV , A ∈ R(n−1)×d×V (Ai ∈ Rd×V ),
W ∈ RV×H , u ∈ RH , T ∈ R(n−1)×d×H (Ti ∈ Rd×H)
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Breaking It Down

Look up each of the history words
hj ,∀j ∈ {1, . . . , n − 1} in M; keep
two copies.

e>hi
V

M
V × d
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Breaking It Down

Look up each of the history words
hj ,∀j ∈ {1, . . . , n − 1} in M; keep
two copies.

Rename them as mhi

e>hi
V

M
V × d

= mhi
d
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Breaking It Down

Apply an affine transformation to
the history-word embeddings (u, T)

e>hi
V

M
V × d

= mhi
d

u
H

+
∑n−1

i=1 mhi
d

Ti
d × H
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Breaking It Down

Apply an affine transformation to
the history-word embeddings (u, T)

and a tanh nonlinearity

e>hi
V

M
V × d

= mhi
d

tanh

(
u
H

+
∑n−1

i=1 mhi
d

Ti
d × H

)
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Breaking It Down

Apply an affine transformation to
everything (b, A, W)

e>hi
V

M
V × d

= mhi
d

b
V

+
∑n−1

i=1 mhi
d

Ai
d × V

+

W
V × H

tanh

(
u
H

+
∑n−1

i=1 mhi
d

Ti
d × H

)
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Breaking It Down

Apply a softmax transformation to
make the vector sum to one.

softmax

(
b
V

+
∑n−1

i=1 mhi
d

Ai
d × V

+ W
V × H

tanh

(
u
H

+
∑n−1

i=1 mhi
d

Ti
d × H

))

Yangqiu Song (HKUST) Learning for Text Analytics April 25, 2018 15 / 41



Breaking It Down

softmax

(
b
V

+
n−1∑
i=1

e>hi
V

M
V × d

Ai
d × V

+ W
V × H

tanh

(
u
H

+
n−1∑
i=1

e>hi
V

M
V × d

Ti
d × H

))

Like a log-linear language model with two kinds of features:

Concatenation of context-word embeddings vectors ((mh1 , . . . ,mhn−1),
mapped by A = (A>1 , . . . ,A

>
n−1)>)

tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine
transformation “inside” the nonlinearity.
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Number of Parameters

softmax

(
b
V

+
n−1∑
i=1

e>hi
V

M
V × d

Ai
d × V

+ W
V × H

tanh

(
u
H

+
n−1∑
i=1

e>hi
V

M
V × d

Ti
d × H

))
D = Vd︸︷︷︸

M

+ V︸︷︷︸
b

+ (n − 1)dV︸ ︷︷ ︸
A

+ VH︸︷︷︸
W

+ H︸︷︷︸
u

+ (n − 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003):
V ≈ 18, 000 (after OOV processing)
d ∈ {30, 60}
H ∈ {50, 100}
n − 1 = 5

So D = 461V + 30, 100 = 8.3M parameters, compared to O(V n) for
classical n-gram models

Forcing A = 0 eliminated 300V parameters and performed a bit better,
but was slower to converge
If we averaged mhi instead of concatenating, we’d get to 221V + 6, 100
(this is a variant of “continuous bag of words,” Mikolov et al. (2013))
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Why Does It Work?

Historical answer: multiple layers and nonlinearities allow feature
combinations a linear model can’t get.

Suppose we want
y = xor(x1, x2) = x1 · x̄2 + x̄1 · x2 = (x1 + x2) · (x̄1 + x̄2)

Example (xor)

x1 x2 y = xor(x1, x2)

0 0 0
0 1 1
1 0 1
1 1 0

https://accu.org/index.php/journals/1915

this can’t be expressed as a linear function of x1 and x2.
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Why Does It Work?

Historical answer: multiple layers and nonlinearities allow feature
combinations a linear model can’t get.

Suppose we want
y = xor(x1, x2) = x1 · x̄2 + x̄1 · x2 = (x1 + x2) · (x̄1 + x̄2)
this can’t be expressed as a linear function of x1 and x2, but

z = x1 · x2
y = x1 + x2 − 2z

(a non-linear function z = x1 · x2 can help resolve it)
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xor Example (D = 13)
https://github.com/clab/dynet/tree/master/examples/xor

Regression of y = xor(x1, x2): arg minθ(y − f (x,θ))2

Linear:
f (x) = v>

3

(W
3× 2

x
2

+ b
3

) + a
1

Non-linear:
f (x) = v>

3

tanh(W
3× 2

x
2

+ b
3

) + a
1
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Why Does It Work?

Historical answer: multiple layers and nonlinearities allow feature
combinations a linear model can’t get.

Suppose we want
y = xor(x1, x2) = x1 · x̄2 + x̄1 · x2 = (x1 + x2) · (x̄1 + x̄2)
This can’t be expressed as a linear function of x1 and x2, but

z = x1 · x2
y = x1 + x2 − 2z

With high-dimensional inputs, there are a lot of conjunctive features to
search through

For log-linear models, Pietra et al. (1997) did this, greedily

Neural models seem to smoothly explore lots of
approximately-conjunctive features

Modern answer: representations of words and histories are tuned to
the prediction problem

Word embeddings: a powerful idea...

Yangqiu Song (HKUST) Learning for Text Analytics April 25, 2018 21 / 41



Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural
language models. You should think of this as a generalization of the
discrete view of V
Deerwester et al. (1990) explored dimensionality reduction techniques
for information retrieval-style querying of text collections

We will come back to this later

Considerable ongoing research on learning word representations to
capture linguistic similarity (Turney and Pantel (2010)); this is known
as vector space semantics
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Words as Vectors: Example

Example

https://blog.acolyer.org/2016/04/21/

the-amazing-power-of-word-vectors/
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Parameter Estimation

Bad news for neural language models:

Log-likelihood function is not concave
Calculating log-likelihood and its gradient is very expensive (5 epochs
took 3 weeks on 40 CPUs, in Bengio et al. (2003))

Good news:

nν is differentiable with respect to M (from which its inputs come) and
ν (its parameters), so gradient-based methods are available
Essential: the chain rule from calculus (sometimes called
“backpropagation”)
Lots more details in Bengio et al. (2003) and (for NNs more generally)
in Goldberg (2016)
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Overview

1 Neural Language Models

2 Extensions

3 Evaluation
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Next Up

More examples of neural language models (in brief):

The log-bilinear language model
Recurrent neural network language models
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Log-Bilinear Language Model
Mnih and Hinton (2007)

In neural language model developed by Bengio et al. (2003):

P(〈v1, . . . , vV 〉|〈h1, . . . , hn−1〉) = nν(〈v1, . . . , vV 〉|〈eh1 , . . . , ehn−1〉) =

softmax

(
b
V

+
n−1∑
i=1

e>hi
V

M
V × d

Ai
d × V

+ W
V × H

tanh

(
u
H

+
n−1∑
i=1

e>hi
V

M
V × d

Ti
d × H

))
we haven’t considered the current word
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Log-Bilinear Language Model
Mnih and Hinton (2007)

Define the n-gram probability as follows, for each v ∈ V:

P(v |〈h1, . . . , hn−1〉) =

exp

∑n−1
i=1

(
m>hi

d

A
d × d

+ b
d

)>
mv

d

+ cv


∑

v ′∈V exp

∑n−1
i=1

(
m>hi

d

A
d × d

+ b
d

)>
mv ′

d

+ cv ′


Number of parameters: Vd︸︷︷︸

M

+ (n − 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

The predicted word’s probability depends on its vector mv , not just
on the vectors of the history words

Training this model involves a sum over the vocabulary (like log-linear
models we saw earlier)

Later work explored variations to make learning faster
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Observations about Neural Language Models (So Far)

There’s no knowledge built in that the most recent word hn−1 should
generally be more informative than earlier ones

This has to be learned

In addition to choosing n, also have to choose dimensionalities like d
and H

Parameters of these models are hard to interpret

Example: `2-norm of Ai and Ti in the feedforward model correspond to
the importance of history position i
Individual word embeddings can be clustered and dimensions can be
analyzed (e.g., Tsvetkov et al. (2015))

Architectures are not intuitive

Still, impressive perplexity gains got people’s interest
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Recurrent Neural Network

Each input element is understood to be an element of a sequence:
{x1, x2, . . . , xl}
At each timestep t:

The tth input element xt is processed alongside the previous state st−1
to calculate the new state st
The tth output is a function of the state st
The same functions are applied at each iteration:

st = frecurrent(xt , st−1)

yt = foutput(st)

In RNN language models, words and histories are represented as
vectors (respectively, xt = eht and st).
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RNN Language Model

The original version, by Mikolov et al.
(2010) used a “simple” RNN
architecture along these lines:

st = frecurrent(ext , st−1) =

sigmoid

((
e>xtM

)>
A + s>t−1B + c

)
yt = foutput(st) = softmax(s>t U)

P(v |h1, . . . , hn−1) = [yt ]v

Note: this is not an n-gram (Markov)
model!
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RNN Model Visualization
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Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

“Vanishing gradients” during learning make it hard to propagate error
into the distant past
State tends to change a lot on each iteration; the model “forgets” too
much

Some variants:

“Stacking” these functions to make deeper networks
Sundermeyer et al. (2012) use “long short-term memories” (LSTMs)
and Cho et al. (2014) use “gated recurrent units” (GRUs) to define
frecurrent
Mikolov et al. (2014) engineer the linear transformation in the simple
RNN for better preservation
Józefowicz et al. (2015) used randomized search to find even better
architectures
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Comparison: Probabilistic vs. Connectionist Modeling

Probabilistic Connectionist

What do we engineer? features, assumptions architectures
Theory? as N gets large not really
Interpretation of parameters? often easy usually hard
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Parting Shots

I said very little about estimating the parameters

At present, this requires a lot of engineering
New libraries to help you are coming out all the time
Many of them use GPUs to speed things up

This progression is worth reflecting on:

history: represented as:

before 1996 (n-1)-gram discrete
1996–2003 (n-1)-gram feature vector
2003–2010 (n-1)-gram embedded vector
since 2010 unrestricted embedded vector
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Neural Language Model Results (Bengio et al. (2003))
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Recent Results (Merity et al. (2018))
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Further Reading

Goldberg (2016). A primer on neural network models for natural
language processing.
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