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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

Inference: constrained modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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Quick Review

A language model is a probability distribution over V
Typically P decomposes into probabilities P(xi |hi ). For n-gram
language models, to reduce notation confusion, we set:

xi : wi

hi = (wi−1, . . . ,wi−n+1)>

Probabilities are estimated from data

Today: log-linear language models
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What’s Wrong with N-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).

Central idea today: teach histories and words how to share.
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Log-Linear Models: Definitions

We define a conditional log-linear model P(Y |X ) as:

Y is the set of events (for language modeling, V)
X is the set of contexts (for n-gram language modeling, Vn−1)
φ : X × Y → Rd is a feature vector function
w ∈ Rd are the model parameters

Pw(Y = y |X = x) =
exp(w>φ(x , y))∑

y ′∈Y exp(w>φ(x , y ′))

∗ Pw(Y = y |X = x) , P(Y = y |X = x ,w)

We can re-parameterize an n-gram language model based on w

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 8 / 36



Breaking It Down

Pw(Y = y |X = x) =
exp(w>φ(x , y))∑

y ′∈Y exp(w>φ(x , y ′))

linear score w>φ(x , y)

nonnegative exp(w>φ(x , y))

normalizer
∑

y ′∈Y exp(w>φ(x , y ′)) , Zw(x)

“Log-linear” comes from the fact that:

logPw(Y = y |X = x) = w>φ(x , y)− logZw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models
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Special Case: Logistic Regression

Consider the case where Y ∈ {+1,−1}

Pw(Y = +1|X = x) = exp(w>φ(x ,+1))
exp(w>φ(x ,+1))+exp(w>φ(x ,−1))

= 1
1+exp(w>(φ(x ,−1)−φ(x ,+1)))

= σ(w>φ(x ,+1)− φ(x ,−1))
notation change

= σ(yw>f(x))

where σ(t) = 1
1+e−t is logistic function

Should be familiar, if you know about logistic regression (will come
back to this later)

When Y ∈ {1, 2, . . . ,K}, log-linear models are often called
multinomial logistic regression (softmax function)
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Special Case: N-gram Language Model

Pw(Y = y |X = x) =
exp(w>φ(x , y))∑

y ′∈Y exp(w>φ(x , y ′))

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let h = {wi−1, . . . ,wi−n+1}, x = wi :

d = 1
φ1(h, v) = log c(h, x)
w1 = 1
Z (h) =

∑
x′∈V exp log c(h, x ′) =

∑
x′∈V c(h, x ′) = c(h)

Alternatively, we enumerate all possible n-grams as feature indicators
and set parameter w as the counts:

d = |V|n
φh̃,x̃(h, x) =

{
1 if h=h̃∧v=x̃
0 otherwise

wh̃,x̃ = log c(h̃,x̃)

c(h̃)

Z (h) = 1
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The Geometric View

Suppose we have instance x , Y ∈ {y1, y2, y3, y4}, and there are only
two features, φ1 and φ2.

As a simple example, let the two features be binary functions.
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The Geometric View

Suppose we have instance x , Y ∈ {y1, y2, y3, y4}, and there are only
two features, φ1 and φ2.

w>φ = w1φ1 + w2φ2 = 0

distance(w>φ = 0, φ0) = w>φ0
‖w‖2 ∝ w>φ0

w>φ(x , y1) > w>φ(x , y3) > w>φ(x , y4) > w>φ(x , y2)
P(y1|x) > P(y3|x) > P(y4|x) > P(y2|x)
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The Geometric View

Suppose we have instance x , Y ∈ {y1, y2, y3, y4}, and there are only
two features, φ1 and φ2.

P(y3|x) > P(y1|x) > P(y2|x) > P(y4|x)

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 14 / 36



Why Build Language Models This Way?

Exploit features of histories for sharing of statistical strength and
better smoothing (Lau et al. (1993))

Condition the whole text on more interesting variables like the gender,
age, or political affiliation of the author (Eisenstein et al. (2011))

Interpretability! Each feature φk controls a factor to the probability
(ewk )

If wk < 0 then φk makes the event less likely by a factor of 1
e|wk |

If wk > 0 then φk makes the event more likely by a factor of ewk

If wk = 0 then φk has no effect
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Log-Linear N-Gram Models

Pw(Y = y |X = x) =
exp(w>φ(x , y))∑

y ′∈Y exp(w>φ(x , y ′))

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let hi = {wi−1, . . . ,wi−n+1}, xi = wi :

Pw(W) =
N∏
i=1

P(wi |wi−1, . . . ,wi−n+1)

parameterization
=

N∏
i=1

exp (w>φ(hi , xi ))

Zw(hi )

What features are there used in φ(hi , xi ) more than traditional
n-gram language models?
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What features in φ(hi , xi)?

Example

Saturday
Sunday
Monday

I visited Central last month
...
pizza

Traditional n-gram features: wi−1 = last ∧ wi = Saturday

“Gappy” n-gram features: wi−2 = Central ∧ wi = Saturday

Spelling features: wi ’s first character is capitalized

Class features: wi is a member of class 132

Gazetteer features: wi is listed as a geographic place name,
date/time, person name, organization name, etc.
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What features in φ(hi , xi)?

You can define any features you want!
Too many features, and your model will overfit

“Feature selection” methods, e.g., ignoring features with very low
counts, can help

Too few (good) features, and your model will not learn
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“Feature Engineering”

Many advances in NLP (not just language modeling) have come from
careful design of features

Sometimes “feature engineering” is used pejoratively

Some people would rather not spend their time on it!

There is some work on automatically inducing features (Pietra et al.
(1997))

More recent work in neural networks can be seen as discovering
features (instead of engineering them)

But in NLP, there’s a strong preference for interpretable features
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How to Estimate w?

n-gram log -linear n-gram

Pθ(W) =
∏N

i=1 θxi |hi Pw(W) =
∏N

i=1
exp (w>φ(hi ,xi ))

Zw(hi )

Parameters : θx |h wk

∀x ∈ V,h ∈ (V ∪ ∅)n−1 k ∈ {1, . . . , d}

MLE : c(h,x)
c(h) no closed form
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MLE for w

Let training data consist of {(hi ; xi )}Ni=1

Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

logPw(xi |hi )

= max
w∈Rd

N∑
i=1

[w>φ(xi ,hi )− log
∑
v∈V

exp(w>φ(hi , v))︸ ︷︷ ︸
Zw(hi )

]

This is concave in w
Convexity: http://qwone.com/~jason/writing/convexLR.pdf

Zw(hi ) involves a sum over V terms.
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MLE for w

L = max
w∈Rd

N∑
i=1

[w>φ(xi ,hi )− log
∑
v∈V

exp(w>φ(hi , v))︸ ︷︷ ︸
Zw(hi )

]

Hope/fear view: for each instance i ,
increase the score of the correct output xi : score(xi ) = w>φ(xi ,hi )
decrease the “average” score overall: log

∑
v∈V exp(score(v))

Gradient view:

∇wL =
N∑
i=1

[φ(xi ,hi )−
∑
v∈V

exp(w>φ(hi , v))∑
v ′∈V exp(w>φ(hi , v ′))

φ(hi , v)]

=
N∑
i=1

[φ(xi ,hi )− EPw(X |hi )[φ(X ,hi )]]

Setting this to zero means getting model’s expectations to match
empirical expectations.
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MLE for w: Algorithms

Batch methods (L-BFGS is popular)

Stochastic gradient descent more common today, especially with
special tricks for adapting the step size over time

Many specialized methods (e.g., “iterative scaling”)

Will come back to this topic later
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Stochastic Gradient Ascent

L = max
w∈Rd

N∑
i=1

[w>φ(xi ,hi )− log
∑
v∈V

exp(w>φ(hi , v))︸ ︷︷ ︸
fi (w)

]

Goal: maximize L with respect to w

Input: initial value w, number of epochs T , learning rate α

For t = 1, . . . ,T

Choose a random permutation π of {1, . . . ,N}
For i = 1, . . . ,N

w← w + α∇wfπ(i)(w)

Output: w
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Maximum Entropy Interpretation

Consider a distribution P over events in X . The Shannon entropy (in
bits) of P is defined as:

H(P) = −
∑
x∈X

P(X = x)

{
0 if P(X = x) = 0

log2 P(X = x) otherwise

Figure: X-axis: Probability of head of a coin. Y-axis: entropy.

This is a measure of “randomness” (expected surprise of P); entropy
is zero when P is deterministic and log |X | when P is uniform

Maximum entropy principle: among distributions that fit the data,
pick the one with the greatest entropy
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Maximum Entropy

Principle:
The probability distribution which best represents the current state of
knowledge is the one with largest entropy, in the context of precisely
stated prior data

Example

Testable information is a statement about a probability distribution whose
truth or falsity is well-defined. For example, the statements are

the expectation of the variable x is 2.87, and

p2 + p3 > 0.6

The maximum entropy procedure consists of seeking the probability
distribution which maximizes information entropy, subject to the
constraints of the information

This constrained optimization problem is typically solved using the
method of Lagrange multipliers.

Yangqiu Song (HKUST) Learning for Text Analytics Spring 2018 28 / 36



Maximum Entropy: Running Example

What do we want from a distribution?
Minimize commitment=maximize entropy
Resemble some reference distribution (data)

Solution: maximize entropy H, subject to feature-based constraints

EP [fk ] = EP̂ [fk ]⇔
∑

x∈fk fk(x)P(x) = Ck

Figure: Left: unconstrained, max at 0.5. Right: constrained at P(head) = 0.3.

Adding more constraints (features)
Lowers maximum entropy
Raises maximum likelihood of data
Brings distribution further from uniform
Brings distribution closer to data
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Maximum Entropy: Running Example
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Log-linear Models as Maximum Entropy

If “fit the data” is taken to mean the following constraints:∑N
i=1[φk(xi ,hi )− EPw(X |hi )[φk(X ,hi )]]

(model’s expectations to match empirical expectations)
⇔ ∀k ∈ {1, . . . , d},EP [φk ] = EP̂ [φk ]⇔

∑
x∈fk fk(x)P(x) = Ck

The (conditional) entropy: H =
∑

i Pw(X |hi ) logPw(X |hi )
The dual of this constrained optimization problem has the same form
of log-linear model

Detailed derivation: https://homes.cs.washington.edu/

~nasmith/papers/smith.tut04.pdf

The MLE of the log-linear family with features φk is the maximum
entropy solution

This is why log-linear models are sometimes called “maxent” models
(e.g., Berger et al. (1996))
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Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

[w>φ(xi ,hi )− logZw(hi )]

If φ(xi ,hi ) is (almost) always positive, we can always increase the
objective (a little bit) by increasing wk toward +∞
Standard solution is to add a regularization term:

max
w∈Rd

N∑
i=1

[w>φ(xi ,hi )− logZw(hi )]− λ‖w‖pp

where λ > 0 is a hyperparameter and p = 2 or 1.
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`1 Regularization

This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

[w>φ(xi ,hi )− logZw(hi )]− λ‖w‖1

This results in sparsity (i.e., many wk = 0).

Many have argued that this is a good thing (Tibshirani (1996)); it’s a
kind of feature selection
Do not confuse it with data sparseness (a problem to be overcome)!

This is not differentiable at wk = 0

Optimization: special solutions for batch (e.g., Andrew and Gao
(2007)) and stochastic (e.g., Langford et al. (2009)) settings
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MLE for w

We will come back to gradient based methods later

Notes so far:

There is no closed form; you must use a numerical optimization
algorithm
Log-linear models are powerful but expensive (Zw(hi ))
Regularization is very important; we don’t actually do MLE

Just like for n-gram models! Only even more so, since log-linear models
are even more expressive
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Further Reading

Berger et al. (1996).A Maximum Entropy Approach to Natural
Language Processing.

Collins (2011). Course notes for COMS w4705: Log-linear models,
MEMMs, and CRFs, 2011.
http://www.cs.columbia.edu/~mcollins/crf.pdf

Smith (2004). Log-linear models, 2004. https://homes.cs.

washington.edu/~nasmith/papers/smith.tut04.pdf
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