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Course Topics

Representation: language models, word embeddings, topic models

Learning: supervised learning, semi-supervised learning, sequence models,
deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

NLP applications: tasks introduced in Lecture 1
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Overview

1 Basic Concepts of Probability

2 Language Models

3 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-turing Smoothing
Interpolation Smoothing

4 Evaluation
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Random Variables

A random variable is some aspect of the world about which we (may)
have uncertainty

R = Is it raining?
T = Is it hot or cold?
D = How long will it take to drive to work?
W = A word that can be written by human.

Random variables have domains

R in {true, false} (often write as {+r, -r})
T in {hot, cold}
D in [0,∞)
W in vocabulary
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Probability Distributions

Unobserved random variables have distributions

Must have: ∀x ,P(X = x) ≥ 0 and
∑

x P(X = x) = 1

Example (Probability Distributions)

T P(T )

hot 0.7
cold 0.3

W P(W )

sun 0.5
rain 0.3
fog 0.2

We will have more examples when introducing topic models
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Joint Distributions

A joint distribution over a set of random variables: X1,X2, . . . ,Xn

specifies a real number for each assignment (or outcome):

P(X1 = x1,X2 = x2, . . . ,Xn = xn) or P(x1, x2, . . . , xn)

Must obey:

P(x1, x2, . . . , xn) ≥ 0 and
∑

x1,x2,...,xn
P(x1, x2, . . . , xn) = 1

Example (Joint Distribution)

T W P(T ,W )

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Events

An event is a set E of outcomes:
P(E ) =

∑
x1,x2,...,xn∈E P(x1, x2, . . . , xn)

From a joint distribution, we can calculate the probability of any
event

Probability that its hot AND sunny?
Probability that its hot?
Probability that its hot OR sunny?

T W P(T ,W )

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

Example (Marginal Distribution)

T W P(T ,W )

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P(T )

hot 0.5
cold 0.5

P(t) =
∑

w P(t,w)

W P(W )

sun 0.6
rain 0.4

P(w) =
∑

t P(t,w)
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Conditional Probabilities

A simple relation between joint and conditional
probabilities

In fact, this is taken as the definition of a
conditional probability P(a|b) = P(a,b)

P(b)

Example (Conditional Probabilities)

T W P(T ,W )

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P(W |hot)

sun 0.8
rain 0.2

P(W ,T=hot)
P(T=hot)

W P(W |cold)

sun 0.4
rain 0.6

P(W ,T=cold)
P(T=cold)
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Product Rule, Chain Rule, and Bayes’ Rule

Sometimes have conditional distributions but want the joint (product
rule)

P(x |y)P(y) = P(x , y)⇔ P(x |y) = P(x ,y)
P(y)

More generally, can always write any joint distribution as an
incremental product of conditional distributions (chain rule)
P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x2, x1)
P(x1, x2, . . . , xn) =

∏
i P(xi |x1, . . . , xi−1)

Two ways to factor a joint distribution over two variables:
P(x , y) = P(x |y)P(y) = P(y |x)P(x)

Dividing, we get Bayes’ Rule:
P(x |y) = P(y |x)P(x)

P(y)
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Independence and Conditional Independence

X and Y are independent if ∀x , y , P(x , y) = P(x)P(y)

X and Y are conditionally independent given Z if
∀x , y , z , P(x , y |z) = P(x |z)P(y |z)

(Conditional) independence is a property of a distribution
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Probability Models

Building a probability model consists of two steps:

Defining the model

Estimating the models parameters

Models (almost) always make independence assumptions.

That is, even though X and Y are not actually independent, our
model may treat them as independent.

This reduces the number of model parameters that we need to
estimate (e.g. from N2 to 2N)
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Overview

1 Basic Concepts of Probability

2 Language Models

3 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-turing Smoothing
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4 Evaluation
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What is a Statistical Language Model (LM)?

A model specifying probability distribution over word sequences

P(“Today is Wednesday”) ≈ 0.001
P(“Today Wednesday is”) ≈ 0.0000000000001
P(“The eigenvalue is positive”) ≈ 0.00001

It can be regarded as a probabilistic mechanism for “generating” text,
thus also called a “generative” model
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Why is a LM Useful?

Provide a principled way to quantify the uncertainties associated with
natural language

Allow us to answer questions like:

Given that we see “John” and “feels”, how likely will we see “happy”
as opposed to “habit” as the next word? (speech recognition)

Given that we observe “baseball” three times and “game” once in a
news article, how likely is it about “sports” v.s. “politics” (text
categorization)

Given that a user is interested in sports news, how likely would the user
use “baseball” in a query? (information retrieval)
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Measure the Fluency of Documents

How likely this document is generated by a given language model

If Pmachine−learning (d) > Phealth(d), document d belongs to machine
learning related topics

If Pusera(d1) > Pusera(d2), recommend d1 to usera
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Source-Channel Framework [Shannon ’48]

X̂ = arg maxX P(X |Y ) = arg maxX P(Y |X )P(X ) (Bayes Rule)

When X is text, P(X ) is a language model

X Y

Speech recognition Word sequence Speech signal
Machine translation English sentence Chinese sentence
OCR Error Correction Correct word Erroneous word
Information Retrieval Document Query
Summarization Summary Document
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Language Model for Text

Goal: Assign useful probabilities P(X ) to sentences/documents X

Input: many observations of training sentences X
Output: system capable of computing P(X )

Probabilities should broadly indicate plausibility of sentences

P(I saw a van) � P(eyes awe of an)
Not grammaticality: P(artichokes intimidate zippers) ≈ 0
In principle, “plausible” depends on the domain, context, speaker...
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Language Model for Text

Probability distribution over word sequences (chain rule)
P(w1,w2, . . . ,wn) = P(w1)P(w2|w1) . . .P(wn|w1,w2, . . . ,wn−1)

Complexity – O(V n∗)

V : vocabulary size
n∗: maximum document (or sentence) length
We need independence assumptions!

Example

475,000 main headwords in Webster’s Third New International
Dictionary

Average English sentence length is 14.3 words

A rough estimate: O(475, 00014) ≈ 3.38e66TB
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Unigram Language Model

Generate a piece of text by generating each word independently

P(w1,w2, . . . ,wn) = P(w1)P(w2) . . .P(wn)

Essentially a multinomial distribution over the vocabulary

The simplest and most popular choice!

Example (Unigram Language Model)
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More Sophisticated LMs

N-gram language models

Assumes each word depends only on the last n-1 words

bigram P(w1,w2, . . . ,wn) = P(w1)P(w2|w1) . . .P(wn|wn−1)
trigram P(w1,w2, . . . ,wn) = P(w1)P(w2|w1) . . .P(wn|wn−1,wn−2)

Such independence assumptions are called Markov assumptions (of
order n-1)
P(wi |w1, . . . ,wi−1) = P(wi |wi−n+1, . . . ,wi−1)
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Markov Models

Value of X at a given time is called the state

Parameters: called transition probabilities, specify how the state
evolves over time (also, initial state probabilities)

Stationarity assumption: transition probabilities the same at all times

Example (First-order Markov Chain)

“Markov” generally means that given the present state, the future and the
past are independent

P(X1,X2, . . . ,Xn) = P(X1)P(X2|X1) . . .P(Xn|Xn−1) =
P(X1)

∏n
t=1 P(Xt |Xt−1)
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Why Just Unigram Models (in most cases)?

Difficulty in moving toward more complex models

They involve more parameters, so need more data to estimate
They increase the computational complexity significantly, both in time
and space

Capturing word order or structure may not add so much value for
“topical inference”

But, using more sophisticated models can still be expected to improve
performance ...
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Generative View of Text Documents
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Computer Simulation

Sample from a discrete distribution P(X ), assuming n outcomes in the
event space X

Algorithm 1 Sample from a distribution P(X )

1: for t = 1 to T do
2: Divide the interval [0, 1] into n intervals according to the probabilities

of the outcomes
3: Generate a random number r between 0 and 1
4: Return xi where r falls into [

∑i−1
0 pi ,

∑i
0 pi ]

5: end for
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Generating Text from Language Models

Example
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Generating Text from Language Models

Example
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N-gram Language Models Will Help

Example (Generated from language models of New York Times)

Unigram

Months the my and issue of year foreign new exchanges september
were recession exchange new endorsed a q acquire to six executives.

Bigram

Last December through the way to preserve the Hudson corporation
N.B.E.C. Taylor would seem to complete the major central planners
one point five percent of U.S.E. has already told M.X. corporation of
living on information such as more frequently fishing to keep her.

Trigram

They also point to ninety nine point six billon dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions.
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Estimation of Language Models
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Parameter Estimation

General setting

Given a (hypothesized & probabilistic) model that governs the random
experiment
The model gives a probability of any data P(X|θ) that depends on the
parameter θ
Now, given actual sample data X = x1, . . . , xn, what can we say about
the value of θ?

Intuitively, take our best guess of θ

“best” means “best explaining/fitting the data”

Generally an optimization problem
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Maximum Likelihood vs. Bayesian

Maximum likelihood estimation

“Best” means “data likelihood reaches maximum”

θ̂ = arg maxθ P(X|θ)

Issue: small sample size

Bayesian estimation

“Best” means being consistent with our “prior” knowledge and
explaining data well

θ̂ = arg maxθ P(θ|X ) = arg maxθ P(X|θ)P(θ)

A.k.a, maximum a posterior estimation
Issue: how to define prior?
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Illustration of Bayesian Estimation
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Corpora

A corpus is a collection of text

Annotated in some way: supervised learning
Sometimes just lots of text without any annotations: unsupervised
learning
Balanced vs. uniform corpora

Examples

Newswire collections: 500M+ words
Brown corpus: 1M words of tagged balanced text
Penn Treebank: 1M words of parsed WSJ
Canadian Hansards: 10M+ words of aligned French / English sentences
The Web: billions of words of who knows what
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Unigram Modeling

Data corpus: a collection of words, W = {w1,w2, . . . ,wN}
Model: multinomial distribution P(W|θ) with parameters
θ = (θ1, . . . , θV ), where

θi = P(vi )
vi ∈ V
V is the vocabulary
|V| = V

Count of words in corpus u = (u1, . . . , uV ) where ui = c(vi ) is the
count of vi shown in W,

∑
i ui = N
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Unigram Modeling

“Bag of words” assumes the words are sampled from a multinomial
distribution u ∼ Multi(θ)

P(u|θ) =

(
N
u

) V∏
i=1

θuii , Mult(u|θ,N),where

(
N
u

)
=

N!∏
i ui !

If we focus on a single trial, we have:

P(w |θ) = P(w = vi ) =
V∏
i=1

θ
δw=vi
i , Mult(w |θ)

Maximum likelihood estimator: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
N∏
j=1

P(wj |θ) =
V∏
i=1

P(vi )
ui =

V∏
i=1

θuii
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Maximum Likelihood Estimation: θ̂ = argmaxθ P(W|θ)

P(W|θ) =
∏V

i θ
ui
i

(log likelihood)

⇒ logP(W|θ) =
∑V

i ui log θi

(Lagrange multiplier to make θ be a distribution)

⇒ L(W,θ) = logP(W|θ) =
∑V

i ui log θi + λ(
∑

i θi − 1)

(Set partial derivatives to zero)

⇒ ∂L
∂θi

= ui
θi

+ λ

Since
∑V

i θi = 1, we have λ = −
∑V

i ui

⇒ θi =
ui∑V
i ui

=
ui
N

(Maximum Likelihood Estimation ,MLE )
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The Problems with Unigram Modeling

Pros:

Easy to understand
Cheap
Good enough for information retrieval (maybe)

Cons:
“Bag of words” assumption is linguistically inaccurate

P(the the the the) � P(I want ice cream)

Data sparseness; high variance in the estimator
“Out of vocabulary” problem
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N-gram model

Markov modeling

= P(w1, . . . ,wN)

=
∏N

i=1 P(wi |w1, . . . ,wi−1) (chain rule)

=
∏N

i=1 P(wi |wi−1, . . . ,wi−n+1) (Markov model)

(n - 1)th-order Markov assumption ≡ n-gram model

Unigram model is the n = 1 case
For a long time, trigram models (n = 3) were widely used
5-gram models (n = 5) are not uncommon now in machine translation
systems

Parameter estimation

P(wi |wi−1, . . . ,wi−n+1) =
c(v1 = wi , . . . , v

n = wi−n+1)

c(v1 = wi−1, . . . , vn−1 = wi−n+1)

v j is a unique word v at position j
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Estimating N-gram models: A Running Example

Example (Bigram Model)

Bracket each sentence by special start and end symbols:
〈s〉 Alice was beginning to get very tired ... 〈s〉
(We only assign probabilities to strings 〈s〉...〈s〉)
Count the frequency of each n-gram
c(〈s〉, Alice) = 1, c(Alice, was) = 1,

Normalize to get the probability

P(wi |wi−1) =
c(wi ,wi−1)
c(wi−1)

P(was|Alice) = c(was,Alice)
c(Alice)

This is called a relative frequency estimate of P(wi |wi−1)
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The Problems with N-gram Modeling

The curse of dimensionality: the number of parameters grows
exponentially in n

Pros:

Easy to understand
Cheap (with modern hardware; Lin and Dyer (2010))
Good enough for machine translation, speech recognition, ...

Cons:
Markov assumption is linguistically inaccurate

(But not as bad as unigram models!)

Data sparseness; high variance in the estimator

most n-grams will never be observed, even if they are linguistically
plausible

“Out of vocabulary” problem
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Problem with MLE: Unseen Events

We estimated a model on 440K word tokens, but:
Only 30,000 unique words occurred
Only 0.04% of all possible bigrams occurred

This means any word/n-gram that does not occur in the training data
has zero probability!
No future documents can contain those unseen words/n-grams

In natural language:

A small number of events
(e.g. words) occur with high
frequency
A large number of events
occur with very low frequency
Zipfs law: the long tail
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Dealing with Unseen Events

Relative frequency estimation assigns all probability mass to events in
the training corpus

But we need to reserve some probability mass to events that don’t
occur in the training data

Unseen events = new words, new bigrams

Important questions:

What possible events are there?
How much probability mass should they get?
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Dealing with Unseen Events

If we want to assign non-zero probabilities to unseen events

Unseen events = new words, new n-grams
Discount the probabilities of observed words

General procedure

Reserve some probability mass of words seen in a document/corpus
Re-allocate it to unseen words
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Illustration of N-gram Language Model Smoothing
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What Unseen Events May Occur?

Simple distributions:

P(X = x)

(e.g. unigram models)

Possibility:

The outcome x has not occurred during training (i.e. is unknown)
We need to reserve mass in P(X ) for x

What outcomes x are possible?

How much mass should they get?
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What Unseen Events May Occur?

Simple conditional distributions:

P(X = x |Y = y)

(e.g. bigram models)

Possibility:

The outcome x has been seen, but not in the context of Y = y :
We need to reserve mass in P(X |Y = y) for X = x

The conditioning variable y has not been seen:

We have no P(X |Y = y) distribution.
We need to drop the conditioning context Y = y and use P(X )
instead.
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What Unseen Events May Occur?

Complex conditional distributions:

P(X = x |Y = y ,Z = z)

(e.g. trigram models)

Possibility:

The outcome x has been seen, but not in the context of
(Y = y ,Z = z):
We need to reserve mass in P(X |Y = y ,Z = z) for X = x

The joint conditioning event (Y = y ,Z = z) has not been seen:

We have no P(X |Y = y ,Z = z) distribution.
We need to drop z and use P(X |Y = y) instead.
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Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)
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Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)

Case 1:

P(wallaby), P(wallaby |the), P(wallaby |the, 〈s〉)
What is the probability of an unknown word (in any context)?
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Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)

Case 2:

P(endangered |is)
What is the probability of a known word in a known context, if that
word hasn’t been seen in that context?
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Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)

Case 3:

P(is|wallaby), P(is|wallaby , the), P(endangered |is,wallaby)
What is the probability of a known word in an unseen context?
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Dealing with Unknown Words: The Simple Solution

Training:

Assume a fixed vocabulary (e.g. all words that occur at least twice (or
n times) in the corpus)
Replace all other words by a token 〈UNK 〉 (or a special OOV)
Estimate the model on this corpus

Testing:

Replace all unknown words by 〈UNK 〉
Run the model

This requires a large training corpus to work well!
Note: You cannot fairly compare two language models that apply different
UNK treatments!
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Jurafsky and Martin (2017). Speech and Language Processing.
Chapter 4: N-Grams.
https://web.stanford.edu/~jurafsky/slp3/

Chen and Goodman (1996). An empirical study of smoothing
techniques for language modeling.

Collins (2011). Course notes for COMS w4705: Language modeling,
2011. http://www.cs.columbia.edu/~mcollins/courses/

nlp2011/notes/lm.pdf

Zhu (2010). Course notes for cs769: Language modeling, 2011.
http://pages.cs.wisc.edu/~jerryzhu/cs769/lm.pdf
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