Statistical Learning for Text Data Analytics Lecture 1: Introduction

Yangqiu Song

Hong Kong University of Science and Technology

yqsong@cse.ust.hk

Spring 2018

*Contents are based on materials created by Chris Manning, Percy Liang, Hongning Wang, and Haixun Wang

- Chris Manning. CS 224N/Ling 237. Natural Language Processing. https://web.stanford.edu/class/cs224n/
- Percy Liang. ICML tutorial on Natural Language Understanding: Foundations and State-of-the-Art https: //icml.cc/2015/tutorials/icml2015-nlu-tutorial.pdf
- Hongning Wang. CS6501 Text Mining. http://www.cs.virginia. edu/~hw5x/Course/Text-Mining-2015-Spring/_site/

Introduction to NLP

- Why is NLP Important?
- Machine Learning for NLP: Algorithms, Tasks, and Challenges

- Instructor: Yangqiu Song
- Email: yqsong@cse.ust.hk
- Office: RM3518 (Lift25/26)
- Canvas (https://canvas.ust.hk)
- No class meeting on Feb. 14th
 - Will have a make up session in March
- For CSE students, this course does not apply for the requirement: "The 3 credits may be satisfied by courses from other Schools"

- Weekly reading notes (40%): one paper per week, related to the lectures
- Mid-term project proposal: title and abstract (10%):
 - Could be a discussion paper for Math students or a project for CSE students
 - A particular research problem, e.g., structural output learning
 - A particular mathematical challenge, e.g., variance-reduced gradient descent, black-box variational inference for probabilistic topic model
 - An application: sequence tagging, sentiment analysis, etc.
 - Investigate an algorithm, e.g., deep learning (RNN)
- Project report (30%)
- Final project presentation(20%)

- Text modeling: language models, distributed representations
- Document classification: supervised learning, semi-supervised learning
- Topic models: SVD, probabilistic models
- Word tagging: sequence models, constrained models, posterior regularization
- Deep learning

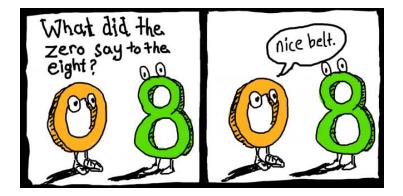
• Why is NLP Important?

• Machine Learning for NLP: Algorithms, Tasks, and Challenges

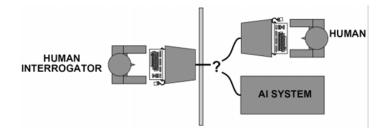
.∃ >

Natural Language

- Understanding language is a very complex thing
- But something that humans are amazingly good at



Artificial Intelligence: Turing Test (1950)

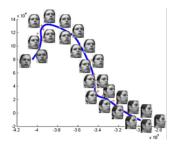


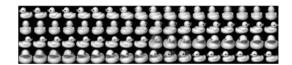
• Replacement of "Can machines think?"

- "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game (later dubbed the Turing test)
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

- Al winter: 1974-80 and 1987-93
 - 1966: the failure of machine translation,
 - 1970: the abandonment of connectionism,
 - 1971-75: DARPA's frustration with the Speech Understanding Research program at Carnegie Mellon University,
 - 1973: the large decrease in AI research in the United Kingdom in response to the Lighthill report,
 - 1973-74: DARPA's cutbacks to academic AI research in general,
 - 1987: the collapse of the Lisp machine market,
 - 1988: the cancellation of new spending on AI by the Strategic Computing Initiative,
 - 1993: expert systems slowly reaching the bottom, and
 - 1990s: the quiet disappearance of the fifth-generation computer project's original goals.

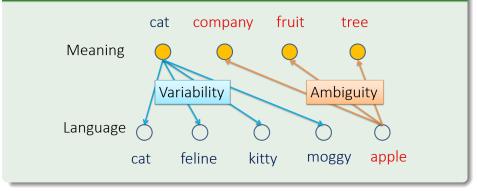
What's Special about Human Language?





- A human language is a discrete/symbolic/categorical signaling system
- With very minor exceptions for expressive signaling ("I loooove it." "Whoomppaaa")
- Large vocabulary, symbolic encoding of words creates a problem for machine learning – sparsity!

Example (variability and ambiguity everywhere)



Example ("Get the cat with the gloves.")

Image: Image:

Huge in size

- Google processes 5.13B queries/day (2013)
- Twitter receives 340M tweets/day (2012)
- Facebook has 2.5 PB of user data + 15 TB/day (4/2009) $(1PB=10^{15}bytes=1000terabytes)$
- eBay has 6.5 PB of user data + 50 TB/day (5/2009)
- 80% data is unstructured (IBM, 2010)
 - Traditional NLP techniques (e.g., parsing) are too slow to handle them
 - Traditional NLP models are based on labeled data in specific domains (WSJ data)

Example (Google Translate)

- 1966: the failure of machine translation
- Now: Google Translate can work with more than 100 languages

Serbian English Chinese Detect language ~ 🏘 English	h Chinese (Simplified) Arabic	▼ Translate					
		Afrikaans	Czech	Hebrew	Latin	Portuguese	Telugu
		Albanian	Danish	Hindi	Latvian	Punjabi	Thai
		Arabic	Dutch	Hmong	Lithuanian	Romanian	Turkish
		Armenian	English	Hungarian	Macedonian	Russian	Ukrainian
		Azerbaijani	Esperanto	Icelandic	Malagasy	Serbian	Urdu
Ф Cp -		Basque	Estonian	Igbo	Malay	Sesotho	Uzbek
	Belarusian	Filipino	Indonesian	Malayalam	Sinhala	Vietnamese	
ype text or a website address or translate a document.		Bengali	Finnish	Irish	Maltese	Slovak	Welsh
		Bosnian	French	Italian	Maori	Slovenian	Yiddish
Help improve		Bulgarian	Galician	Japanese	Marathi	Somali	Yoruba
Google Translate →	Catalan	Georgian	Javanese	Mongolian	Spanish	Zulu	
Google Translate		Cebuano	German	Kannada	Myanmar (Burmese)	Sundanese	
		Chichewa	Greek	Kazakh	Nepali	Swahili	
		Chinese (Simplified)	Gujarati	Khmer	Norwegian	Swedish	
		Chinese (Traditional)	Haitian Creole	Korean	Persian	Tajik	
		Croatian	Hausa	Lao	Polish	Tamil	

NLP Enabled by Big Data

Example (Facebook Translation)

 김창대 via 글 쓰는 김창대

 6 hrs ·

어차피 답 없는 진로 따위. 참, 진, 이슬, 로가 답이다.

Anyway, the answer is not the path. By the way, Jean, is the answer to this,.

Add Friend

Image: Image:

3 🕨 🖌 3

Translated by Bing

"오빠는 박사 따면 뭐할거야?" ^{연재소설-} 박사를 꿈꿔도 되나요 시즌비[지난 줄거...

NLP Enabled by Big Data

Example (IBM's Watson)

- 1971–75:DARPA's frustration with the Speech Understanding
- Now: "Watson is aquestion answering (QA) computing system that IBM built to apply advanced
 - natural language processing,
 - information retrieval,
 - knowledge representation,
 - automated reasoning, and
 - machine learning technologies
- to the field of open domain question answering."

In 2011, Watson competed on Jeopardy! against former winners Brad Rutter and Ken Jennings. Watson received the first place prize of \$1 million.

Example (Apple's Siri)

< □ > < ---->

→ Ξ →

NLP Enabled by Big Data

Example (WolframAlpha Knowledge Powered QA)

WolframAlpha computational...

9 10 11 27	≡ Examples ⊃4 Random
put interpretation:	
I have 2 apples.	
I lose 1 apple.	
How many apples do I have?	
I have 1 apple. Calculation: 2 - 1 = 1	
fanipulatives illustration:	
•• - • = •	
2 1 1	

Yangqiu Song (HKUST)

Text Mining in the Era of Big Data

Example (Document categorization) News Taxonomy Politics Economy Stock Exchange international local Markets USA Asia Classification **************** Documents

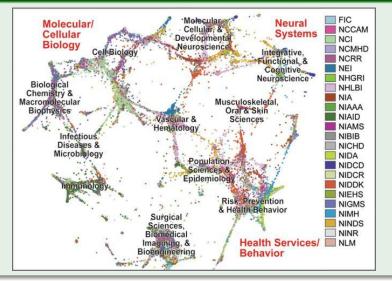
Yangqiu Song (HKUST)

Learning for Text Analytics

Spring 2018 20 / 53

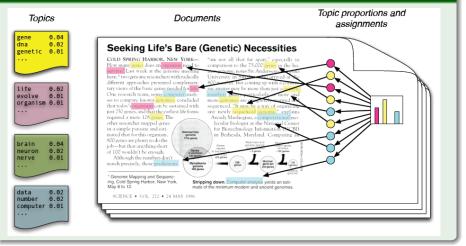
Text Mining in the Era of Big Data

Example (Document categorization)



Yangqiu Song (HKUST)

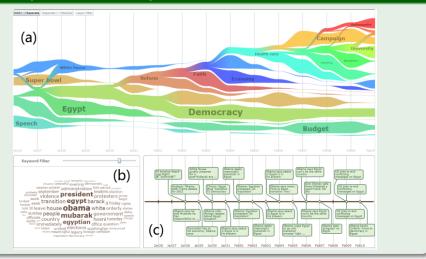
Example (Topic models)



(日) (同) (三) (三)

Text Mining in the Era of Big Data

Example (Time line analysis)



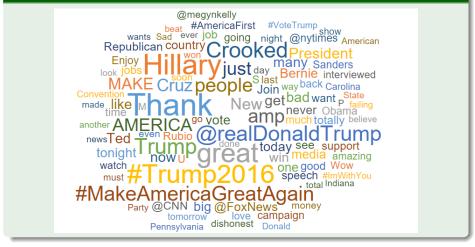
Yangqiu Song (HKUST)

Learning for Text Analytics

Spring 2018 23 / 53

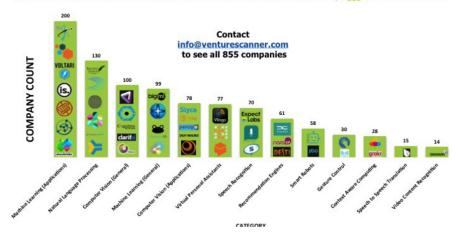
< ロト < 団ト < 団ト < 団ト

Example (Sentiment analysis)

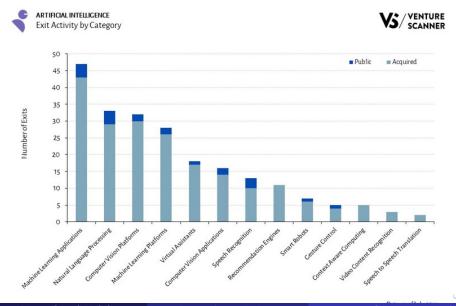


Startup Companies (2015)

Which Artificial Intelligence Categories Are Seeing the Most Innovation? by Venture Scanner

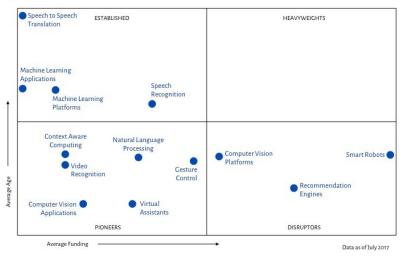


Number of Exits (Acquisitions and IPOs, 2017)



Funding Size vs. Company Age (2017)

ARTIFICIAL INTELLIGENCE



▶ ◀ ≧ ▶ ≧ ∽ �.. Spring 2018 27 / 53

(日) (同) (三) (三)

• Why is NLP Important?

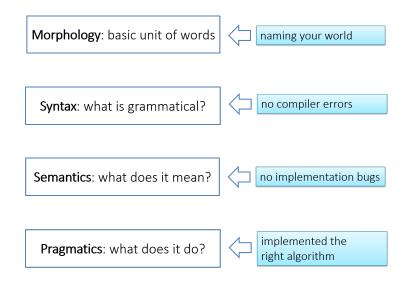
• Machine Learning for NLP: Algorithms, Tasks, and Challenges

- Natural Language Processing
 - Natural Language Understanding (NLU)
 - Natural Language Generation (NLG)
- Machine learning has been widely used in both NLU and NLG
 - given that we have a lot of data now

Popular Statistical Machine Learning Algorithms for NLP

- Mid-1970s: Hidden Markov Models (HMMs) for speech recognition
 → probabilistic models
- Early 2000s: Conditional Random Fields (CRFs) for part-of-speech tagging → structured prediction
- Early 2000s: Latent Dirichlet Allocation (LDA) for modeling text documents → topic modeling
- Mid 2010s: sequence-to-sequence models for machine translation \rightarrow Deep Learning neural networks with memory/state
- Now: ??? for natural language understanding/generation
 - Reinforcement learning?

NLP Tasks: Levels of Linguistic Analysis



Analogy with Programming Languages

- Syntax: no compiler errors
- Semantics: no implementation bugs
- Pragmatics: implemented the right algorithm
- Different syntax, same semantics (5):

 $2+3 \Leftrightarrow 3+2$

• Same syntax, different semantics (1 and 1.5):

3 / 2 (Python 2.7) $\Leftrightarrow 3 / 2$ (Python 3)

• Good semantics, bad pragmatics:

correct implementation of deep neural network for estimating coin flip prob.

Example (Part of speech)

Part-of-Speech:

Tags:

- NN: common noun
- NNP: proper noun
- VB: verb, base form
- VBZ: verb, 3rd person singular

• ...

Syntax (1): Part of Speech

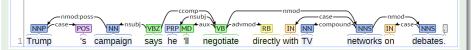
Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	"	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([, (, {, <)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],), \}, >)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ; – -)
RP	Particle	up, off			

Penn Treebank part-of-speech tags (including punctuation).

▶ ◀ 볼 ▶ 볼 ∽ � � ♡ Spring 2018 34 / 53

Example (Dependency parse)

Basic Dependencies:



Dependency relations:

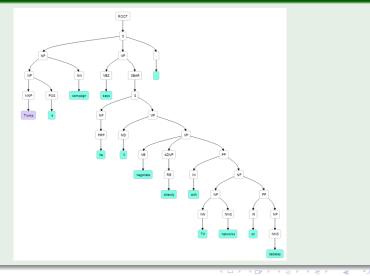
- nsubj: subject (nominal)
- advmod: adverbial modifier

• ...

- (A 🖓

Syntax (3): Constituency Parse Tree

Example (Constituency parsing)



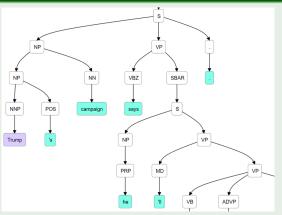
Yangqiu Song (HKUST)

Learning for Text Analytics

Spring 2018 36 / 53

Syntax (3): Constituency Parse Tree

Example (Constituency parsing)



- POS: possessive ending
- PRP: personal pronoun
- MD: modal; can, should

Yangqiu Song (HKUST)

- Syntax: no compiler errors
- Semantics: no implementation bugs
- Pragmatics: implemented the right algorithm
- Semantics: meanings
 - Lexical semantics: what words mean
 - Compositional semantics: how meaning gets combined

Example Words light Multi-word expressions: meaning unit beyond a word light bulb Morphology: meaning unit within a word light lighten lightening relight Polysemy: one word has multiple meanings (word senses) The light was filtered through a soft glass window. • He stepped into the light. This lamp lights up the room. The load is not light.

Example (Synonymy)

Words:

confusing unclear perplexing mystifying

Sentences:

- I have fond memories of my childhood.
- I reflect on my childhood with a certain fondness.
- I enjoy thinking back to when I was a kid.

Beware: no true equivalence due to subtle differences in meaning; think distance metric

But there's more to meaning than similarity...

Hyponymy (is-a):

a cat is a mammal

Meronomy (has-a):

a cat has a tail

Useful for entailment:

Alice is 170cm high and Bob is 180cm high.

 \Rightarrow

Bob is taller than Alice.

Example (Named Entity Recognition)

Named Entity Recognition:

1	Person Trump's campaign says he'll negotiate directly with TV networks on debates.
2	Person [Dur] The move by Trump, coming just hours after his and other campaigns huddled in a Washington suburb to craft a three-page letter of possible demands, thwarts an effort to find consensus after what most candidates agreed was a
	debacle hosted by CNBC last week.

- Pers: Person
- Location
- Org: Organization
- Date/time

Semantics (3): Frame based Semantics

Example (Semantic Role Labeling)

		SRL SRL	Preposition	+
The	Logical subject, patient, thing declining [A1]			
stocks				
declined	V: decline.01		Governor	
on	temporal [AM-TMP]		Temporal (on)	
Tuesday			Object	
John		entity turning down [A0]		
declined		V: decline.02		
the		thing turned down [A1]		
cake				

- Predicates
- Arguments
- Senses

Image: A match a ma

Example (Topics)

Trump's campaign says he'll negotiate directly with TV networks on debates. The move by Trump, coming just hours after his and other campaigns huddled in a Washington suburb to craft a three-page letter of possible demands, thwarts an effort to find consensus after what most candidates agreed was a debacle hosted by <u>CNBC</u> last week.

- Classification
- Clustering
- Topic modeling

Image: Image:

3 ×

Example (General Coreference Problem (Pronoun Resolution))

Coreference:

 Mention
 Mention

 1
 Trump's campaign says he'll negotiate directly with TV networks on debates.

"The Winograd Schema Challenge" (Levesque, 2011)

- The dog chased the cat, which ran up a tree. It waited at the top.
- The dog chased the cat, which ran up a tree. It waited at the bottom.
- Paul tried to call George on the phone, but he wasn't successful.
- Paul tried to call George on the phone, but he wasn't available.

Easy for humans, can't use surface-level patterns

Example (Shallow Discourse Parser for Document-level Analysis)

- S1: Kemper is the first firm to make a major statement with program trading.
- S2: He added that "having just one firm do this isn't going to mean a hill of beans."

We can add a connective "but" between to above two sentences to indicate "Contrast relationship"

- S1: Senator calls this "the first gift of democracy."
- S2: The Poles might do better to view this as a Trojan Horse.

Conversational implicature: new material suggested (not logically implied) by sentence

Example (Conversational implicature)

- A: What on earth has happened to the roast beef?
- B: The dog is looking very happy.
- Implicature: The dog at the roast beef.

Presupposition: background assumption independent of truth of sentence

Example (Presupposition)

- I have stopped eating meat.
- Presupposition: I once was eating meat.

Semantics: what does it mean literally? Pragmatics: what is the speaker really conveying?

- Underlying principle (Grice, 1975): language is cooperative game between speaker and listener
- Implicature and presupposition depend on people and context and involve soft inference (machine learning opportunities here!)

We need a lot of background knowledge and commonsense knowledge!

More about "Commonsense Knowledge"

When we communicate,

- we omit a lot of "common sense" knowledge, which we assume the hearer/reader possesses
- we keep a lot of ambiguities, which we assume the hearer/reader knows how to resolve

Knowledge about the everyday world that is possessed by all people

Example (Commonsense Knowledge)

- A lemon is sour.
- To open a door, you must usually first turn the doorknob.
- If you forget someones birthday, they may be unhappy with you.
- A coat is used for keeping warm.
- People want to be respected.
- The last thing you do when you cook dinner is wash your dishes.
- People want good coffee.

Commonsense Knowledge in Sentiment Analysis

Example (Sentiment Analysis)

Learning for Text Analytics

More about Ambiguity

Ambiguity: more than one possible (precise) interpretations

One morning I shot an elephant in my pajamas.

- "One morning I was wearing my pajamas, and I shot an elephant." or
- "One morning, an elephant was wearing my pajamas, and I shot that elephant."

How he got in my pajamas, I don't know. — Groucho Marx

 The joke is based on misdirection, where the listener thinks one thing, and the teller says another

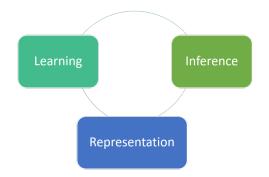
Spring 2018

51 / 53

Yangqiu Song (HKUST)

Learning for Text Analytics

Course Organization



- Representation: language models, word embeddings, topic models
- Learning: supervised learning, semi-supervised learning, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

Applications: tasks introduced above

Yangqiu Song (HKUST)

Logistics

Introduction to NLP

- Why is NLP Important?
- Machine Learning for NLP: Algorithms, Tasks, and Challenges

In this class, we will

- Understand the intuition and motivation of how to model text data
- Know popular and state-of-the-art statistical models for NLP
- Build relationships of different algorithms