
1 Outline

From Algorithm 1 to 2, and hopefully we can get Algorithm 3.

Algorithm 1 Standard proximal gradient descent (PG) algorithm
1: for t = 1, . . . , T do
2: xt+1 = Prox 1

L g

(
xt − 1

L∇f(xt)
)
;

3: end for

Algorithm 2 Accelerated PG (convex)
1: for t = 1, . . . , T do
2: yt = xt + θt(xt − xt−1) where θt = t−1

t+2 ;
3: zt+1 = Prox 1

L g

(
yt − 1

L∇f(yt)
)
;

4: end for

Algorithm 3 Accelerated PG (nonconvex)
1: for t = 1, . . . , T do
2: yt = xt + θt(xt − xt−1) where θt = t−1

t+2 ;
3: zt+1 = Prox 1

L g

(
yt − 1

L∇f(yt)
)
;

4: if F (zt+1) ≤ F (xt)− δ ‖yt − zt+1‖22 then
5: xt+1 = zt+1;
6: else
7: xt+1 = Prox 1

L g

(
xt − 1

L∇f(xt)
)
;

8: end if
9: end for

In each step ask yourself

Step 1

• What optimization PG algorithm can handle? Why it is popular in machine learning?
• What is the most important step for PG algorithm?

Step 2

• What is the acceleration?
• What are the convergence properties of PG algorithms under convex case?

Step 3

• What does nonconvexity mean? What kind of nonconvexity does PG algorithm allow?
• What is PG algorithm for nonconvex optimization?

Step 4

• What is acceleration PG algorithm for nonconvex optimization? Why there are such differ-
ences?
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2 Assumptions

Optimization problem (composite optimization)

min
x
F (x) ≡ f(x) + g(x). (1)

Most update to date assumptions

• f is Lipschitz smooth, i.e., ‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2
• g is lower semi-continuous (see the right figure)

• F is bounded from below, i.e., inf F > −∞

3 Algorithms

In this section, we assume f and g are also both convex.

3.1 Standard PG algorithm

The next iterate xt+1 is generated as

xt+1 = argmin
x
f(xt) + (x− xt)>∇f(xt) +

L

2
‖x− xt‖22 + g(x)

= argmin
x

1

2

∥∥∥∥x− (xt − 1

L
∇f(xt)

)∥∥∥∥2
2

+
1

L
g(x)

= Prox 1
L g

(
xt −

1

L
∇f(xt)

)
The most important step: proximal step (or proximal operator)

x∗ = proxλg(z) ≡ argmin
x

1

2
‖x− z‖22 + λg(x).

It should have cheap (better also closed-form) solutions.

A convergence rate of O(1/T ) is guaranteed, i.e.,

F (xt)− F (x∗) ≤ O
(
1

T
[F (xt)− F (x1)]

)
where T is the number of iterations and x∗ is an optimal solution

3.2 Accelerated PG algorithm

The next iterate xt+1 is generated as

yt = xt + θt(xt − xt−1), xt+1 = Prox 1
L g

(
yt −

1

L
∇f(yt)

)
where θt is a coefficient and can be set as θt = (t− 1)/(t+ 2).

A convergence rate of O(1/T 2) is guaranteed.

• O(1/T 2) is the best rate one can achieve for general convex problems with first order based
optimization methods
• Acceleration has been extended to nonconvex problems and convergence can be guaranteed

[9]. If standard PG algorithm convergence too slow, switch to accelerated one instead.

3.3 Important Tricks

• What if L is unknown - using line-search, e.g., [3, 9]
• Try larger stepsize - nonmonotonous updates, e.g., [6, 9]
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4 Related Papers

Good monograph on proximal gradient descent algorithms.

• A survey paper by Boyd [11]
- Sample codes and slides: http://web.stanford.edu/~boyd/papers/prox_algs.html
- It mainly covers topics of PG algorithm for convex optimization

• Applications of PG algorithm on sparse learning problems - Section 3 [1]

Mile-stone papers

convex nonconvex
standard [5, 13] [6]

accelerated [3] [9]

Extensions of PG algorithms

• proximal gradient + Newton (second order method) [8]
• proximal average: g(x) =

∑
gi(x), g does not have closed-form solution on proximal step,

but each gi does [16, 18]
• inexact PG algorithm [12, 15]

Some closed-form solutions on various proximal steps (convex g)

• group lasso [17]
• tree-structured lasso [10, 7]
• nuclear norm [4]

Some algorithms designed to solve proximal step (convex g), when no closed-form solutions

• overlapping group lasso [17]
• total variation [2]

For nonconvex regularizers (nonconvex g), we can directly handle proximal step with such g, or
using transformation at [14] to convert them back to convex ones.
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