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Abstract 
 

Continuous representation of words in a vector space, or word embedding, has 

been proven to have better performance in natural language processing tasks such 

as word similarity, analogy and parsing. Recent approach to make word vectors 

could be concluded into two main parts: count-based method and predict-based 

method. Both of them follow the idea that words with similar distributional 

contexts should be close to each other in vector space to embed the words. In this 

report, we do a survey on different word embedding method: word2vec, GloVe, 

Swivel and FastText, training on text8 dataset and making evaluation on these 

methods in both similarity tasks and analogy tasks with various evaluation datasets. 
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1. Introduction 

Regarding deep learning in natural language processing, especially machine 

reading and comprehension, the basic idea is to encode the documents into vectors 

containing full information about the text, that is to learn distributed 

representations(embeddings) for words. In recent years, there are a number of 

approaches to focusing on word representation in order to improve the accuracy 

in reading and comprehension task. Methods which have received high attention 

are word2vec [1] (Skip-gram and CBOW) and GloVe [2]. Also there are some 

works, like Swivel [3] focused on optimizing the drawbacks of these two models 

and FastText [4 ] takes consideration on the internal structure of words. These 

methods outperformed other previous models on word analogy, word similarity, 

and named entity recognition tasks. In this report, we do a survey on different word 

embedding method: word2vec, GloVe, Swivel and FastText, training on text8 

dataset and making evaluation on these methods in both similarity tasks and 

analogy tasks with various evaluation datasets. 

 

2. Models 

2.1. word2vec 

The basic ideas of word2vec could be described as: first, words with similar 

distributional contexts ought to be close to each other in the embedding space; 

second, manipulating the distributional context should lead to similar translation 

in the embedding space. For example, the embedded representation of the word 

queen can be translated from the representation of king, man and woman: 

queen ≈ king − man + woman 

In word2vec, it proposes two new model architectures for learning distributed 

representations of words that try to minimize computational complexity: CBOW 

architecture predicts the current word based on the context, and the Skip-gram 

predicts surrounding words given the current word. Model shows in Figure 2.1. 

and the basic formula shows in Figure 2.2. 



 

Figure 2.1. Models of CBOW and Skip-gram 

 

Figure 2.2 Basic formulas of CBOW and Skip-gram 

 

In most training works of word embedding, people use Skip-gram negative 

sampling, a method based on the Skip-gram model by minimizing the dot product 

between the focus word and a randomly sampled non-context word. The goal of it 

is to make an update to the embedding parameters 𝜃 to improve the following 

objective function: 

𝐽𝑁𝐸𝐺 = log𝑄𝜃(𝐷 = 1|𝑤𝑡 , 𝑡) + 𝑘𝔼�̃�~𝑃𝑛𝑜𝑖𝑠𝑒
[log𝑄𝜃(𝐷 = 0|�̃�, ℎ)] 

It has been proved that SGNS could be regarded as implicit matrix factorization 

and the cells in this matrix are the point wise mutual information (PMI) of the 

respective word and context pairs as well as shifted by a global constant5 . Point-

wise mutual information (PMI) is a measure of co-occurrence between two 

features, defined as follows: 



pmi(x, y) = log
P(x,y)

P(x)P(y)
 

The SGNS model has outstanding performance on the analogy task compared with 

other traditional label-tagged methods, but they poorly utilize the statistics of the 

corpus since they train on separate local context windows instead of on global co-

occurrence counts. In addition, it neglects the sequence the words and contexts 

occur in the text. 

2.2. Global Vectors for Word Representation (GloVe) 

GloVe is a global log-bilinear regression model that combines the advantages of 

the two major model families in the literature: global matrix factorization, such as 

latent semantic analysis (LSA) and local context window methods, such as the 

Skip-gram model. This model efficiently leverages statistical information by 

training only on the nonzero elements in a word-word co-occurrence matrix, rather 

than on the entire sparse matrix or on individual context windows in a large corpus. 

In addition, it has considered to preserve the linear directions of meaning, in other 

word, the sequence of words occurring in sentence. Using stochastic gradient 

descent, GloVe learns the model parameters for word embedding matrix 𝑊  and 

context embedding matrix  �̃� , also bias terms 𝑏𝑖  and  𝑏𝑗 . Therefore, the goal of 

GloVe is to minimize the following cost function: 

ℒ𝐺𝑙𝑜𝑣𝑒 = ∑ 𝑓(𝑥𝑖,𝑗)(𝑤𝑖
𝑇�̃�𝑗 − log𝑥𝑖𝑗 + 𝑏𝑖 + 𝑏𝑗)

𝑖 ,𝑗

 

Compared to SGNS which requires training time proportional to the whole size of 

the corpus, GloVe only require training time proportional to the number of 

observed co-occurrence pairs, shortening the training time. 

 

Indeed, GloVe has outperformed other previous models on word analogy, word 

similarity, and named entity recognition tasks. However, it trains only on the 

observed co-occurrence statistics, while giving no penalty for placing features near 

to one another whose co-occurrence has not been observed, thus resulting in poor 

estimates for uncommon features. 

2.3. Swivel 

To handle the drawbacks of SGNS and GloVe, recently, another model for word 

embedding, Submatrix-wise Vector Embedding Learner (Swivel) used a method 

to combine factorization of PMI information matrix with a piecewise loss for 

making use of all the information in the matrix. Like Skip-gram, it makes use of 

the fact that many co-occurrence are unobserved; like GloVe, it works from co-

occurrence statistics rather than by sampling; also like both, it performs a weighted 



approximate matrix factorization of the PMI between features. In Swivel, it splits 

the whole co-occurrence matrix into shards after each rows and columns being 

sorted in descending order of feature frequency. In this way, it can parallelize the 

computation across many nodes at once. The partition process shows in Figure 2.3. 

 

Figure 2.3 Partition to co-occurrence matrix in swivel 

 

In training the model, swivel approximates the observed PMI of row feature 𝑖  and 

feature 𝑗  with  𝑤𝑖
𝑇�̃�𝑗 . It computes the weighted squatted error between the 

embedding dot product and the PMI of feature 𝑖 and feature 𝑗: 

ℒ𝑖 ,𝑗 =
1

2
𝑓(𝑥𝑖𝑗)(𝑤𝑖

𝑇�̃�𝑗 − 𝑝𝑚𝑖(𝑖; 𝑗))
2

 

However, when it comes to an unobserved co-occurrence pair, this model solved 

them simply by the requirement of avoiding over-estimating a smoothed PMI 

value with a “soft hinge”, the light line in Figure 2.4.  

 

 

Figure 2.4: Loss as a function of predicted value of the embedding of two words. 

 

This loss weighted function still does not given a more principled approach: 



log[1 + exp (𝑤𝑖
𝑇�̃�𝑗 − 𝑝𝑚𝑖 ∗(𝑖; 𝑗))] 

2.4. FastText 

Another method which considers on the subword information across words is 

FastText. This character-level method, an extension of Skip-gram model, takes 

consideration on the internal structure of words, thus making connection between 

rare words and relatively frequent words. In this way, it allows to learn reliable 

representation for rare words. This model is a modified model of word2vec, also 

using local context to embed words in vector space. The details of FastText shows 

as follows: 

 

(1) Given a word 𝑤, FastText denotes it by  𝒢𝑤 ⊂ {1, … , 𝐺}, the set of 𝑛-gram 

appearing in 𝑤. It represents a word by the sum of the vector representations of its 

𝑛-gram, then getting the score by using the result to make dot product with the 

embedding of its context. 

𝑠(𝑤, 𝑐) = ∑ 𝑧𝑔
𝑇𝑣𝑐

𝑔∈𝒢𝑤

 

(2) For the word at position 𝑡 and the context 𝑐, the negative log-likelihood is: 

log(1 + 𝑒−𝑠(𝑤𝑡 ,𝑤𝑐 )) + ∑ log (1 + 𝑒𝑠(𝑤𝑡 ,𝑛) )

𝑛∈𝒩𝑡,𝑐

 

(3) Introducing loss functionℓ: 𝑥 ⟼ log (1 + 𝑒−𝑥 ), the objective is: 

∑ ∑ ℓ(𝑠(𝑤𝑡 ,  𝑤𝑐)) + ∑ ℓ(−𝑠(𝑤𝑡 ,  𝑛))

𝑛𝜖𝒩𝑡,𝑐𝑐∈𝐶𝑡

𝑇

𝑡=1

 

The goal is to minimize the loss in the above function. 

 

Compared to other methods of character-level word representation, this method 

does not need morphological segmenters. In other words, it does not require any 

preprocessing of the data, making it fast to apply. Since it shares the 

representations across words, it improves representation for rare words, linking 

them to common words in structural level. 

 

However, this approach still has some shortcomings. When represent a word as a 

set of n-grams, the splitting process is relatively simple since it fixes the length of 

n of n-gram. While sometimes, the representation of a fixed segment of a word is 

meaningless, which cannot represent the prefixes or suffixes of the word.  

 

  



3. Tasks 

We evaluate the four words embedding models in two major tasks namely word 

similarity task and analogy task. 

3.1. Word Similarity Task 

The word similarity datasets were constructed by asking human subjects to rate 

the degree of semantic similarity or relatedness between two words on a 

numerical scale6 . The performance is measured by the Pearson correlation of the 

two word embeddings’ cosine distance and the average score given by the 

participants. The Pearson correlation of two variables can be calculated as 

follows: 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

 

 where: 𝑐𝑜𝑣 is the covariance and 𝜎𝑋  is the standard deviation of 𝑋. 

3.2. Analogy Task 

The analogy task is to evaluate the capacity of word embeddings to make an 

analogy like “man is to woman as king to queen” or “amazing is to amazingly 

as apparent is to apparently”. There are two kind of analogy task, namely 

semantic analogy and syntactic analogy. “man is to woman as king to queen” is 

semantic analogy and amazing is to amazingly as apparent is to apparently” is 

syntactic analogy. 

  



4. Experiment 

4.1. Corpus 

We train models on two corpuses, a 100M small one, named text81. This corpus 

is extracted from English Wikipedia Dumps. 

4.2. Evaluation Datasets 

In word similarity task, we do experiment on 10 evaluation datasets. The 

information of 10 datasets2  are shown in table 4.1 [7]. In analogy task, we do 

experiment on 14 kind of evaluation datasets, among which, 5 are semantic task 

and the rest are syntactic task [8]. The information of 14 datasets is shown in 

table 4.2. 

No. Corpus Name Word Pairs Reference 

1 EN-MC-30 30 Miller and Charles, 1991 

2 EN-WS-353-SIM 203 Agirre et. al, 2009 

3 EN-MTurk-287 287 Radinsky et. al, 2011 

4 EN-MTurk-771 771 Halawi and Dror, 2012 

5 EN-WS-353-REL 252 Agirre et. al, 2009 

6 EN-MEN-TR-3k 3000 Bruni et. al, 2012 

7 EN-RW-STANFORD 2034 Luong et. al, 2013 

8 EN-WS-353-ALL 353 Finkelstein et. al, 2002 

9 EN-YP-130 130 Yang and Powers, 2006 

10 EN-RG-65 65 R and G, 1965 

Table 4.1 Word Similarity Evaluation Datasets Details 

 

  

                                                 
1  http://mattmahoney.net/dc/textdata.html 

2  http://alfonseca.org/eng/research/wordsim353.html 

  http://tx.technion.ac.il/~kirar/Datasets.html 
   http://www2.mta.ac.il/~gideon/mturk771.html 

   http://clic.cimec.unitn.it/~elia.bruni/MEN.html 

   http://www-nlp.stanford.edu/~lmthang/morphoNLM/ 

   http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/ 

http://mattmahoney.net/dc/textdata.html
http://alfonseca.org/eng/research/wordsim353.html


 

No Task Name  Number Example  

1 
capital-common-

countries 
506 

london england paris 

france 

2 capital-world 3564 
beijing china berlin 

germany 

3 currency 596 usa dollar europe euro 

4 city-in-state 2330 
phoenix arizona seattle 

washington 

5 family 420 boy girl brother sister 

6 
gram1-adjective-

to-adverb 
992 

amazing amazingly 

apparent apparently 

7 gram2-opposite 756 
acceptable unacceptable 

aware unaware 

8 gram3-comparative 1332 bad worse big bigger 

9 gram4-superlative 992 bad worst big biggest 

10 
gram5-present-

participle 
1056 

code coding dance 

dancing 

11 
gram6-nationality-

adjective 
1521 

egypt egyptian china 

chinese 

12 gram7-past-tense 1560 
dancing danced 

decreasing decreased 

13 gram8-plural 1332 banana bananas bird birds 

14 gram9-plural-verbs 870 
decrease decreases 

describe describes 

Table 4.2 Word Analogy Evaluation Datasets Details 

 

4.3. Parameters Setting 

The dimension of word vector is set to 300 in all experiment. 

4.3.1. The parameters setting in word2vec 

Parameters CBOW Skip-gram 

Learning rate 0.025 0.025 

Window 5 5 

Negative sample 5 5 



4.3.2. The parameters setting in Glove 

Parameters Glove 

Learning rate 0.025 

window 5 

alpha 0.75 

4.3.3. The parameter settings in FastText 

Parameters CBOW Skip-gram 

Learning rate 0.025 0.025 

Character n-gram 3 3 

Negative sample 5 5 

 

4.3.4. The parameter settings in Swivel 

Parameters Swivel 

Learning rate 1 

Shard size 4096 × 4096 

Window size 10 

4.4. Experiment Environment and Usage 

CPU：Architecture: x86_64 CPU(s): 32 

Model name: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 

Memory：126G 

 

During the experiment, we have found Swivel model will use more memory than 

other methods, since it split the training matrix into shards and every shard is 

trained in the same time. 

 CPU Memory 

GloVe 100% 0.1% 

Word2vec-bow 100% 0.1% 

Word2vec-skip-gram 100% 0.1% 

Swivel 893% 8.2% 

FastText-cbow 100% 1.7% 

FastText-skip-gram 100% 1.7% 

 



4.5. Experiment results 

4.5.1. Comparison on Word Similarity Task 

We have compared all the methods on word similarity task. The details can be 

found in the Table 4.3 below. From the table, we can found word2vec-skip-gram 

model has achieved advanced results in most of types against other methods. 

However, Glove and Swivel never outperform other methods in all types. 

 

 
word2vec 

GloVe Swivel 
FastText 

CBOW Skip-gram CBOW Skip-gram 

EN-MC-30 65.60 65.78 44.77 56.07 71.20 47.29 

EN-WS-353-SIM 71.95 73.17 52.11 72.03 62.57 65.39 

EN-MTurk-287 63.83 66.36 51.51 62.81 63.87 64.90 

EN-MTurk-771 59.84 59.95 43.80 52.98 56.70 59.18 

EN-WS-353-REL 62.64 67.11 53.93 65.14 57.99 61.95 

EN-MEN-TR-3k 64.28 67.54 44.25 59.18 63.47 69.95 

EN-RW-STANFORD 37.77 36.06 24.54 34.54 44.04 39.69 

EN-WS-353-ALL 67.87 71.22 48.80 68.50 60.97 63.32 

EN-YP-130 34.08 39.67 33.20 25.00 33.63 41.22 

EN-RG-65 65.47 65.62 37.25 50.32 64.43 57.53 

Table 4.3: word similarity task results among different models on text8 dataset 

4.5.2. Comparison on Word Analogy Task 

 Semantic Task 

We have compared all the methods on word analogy (semantic) task. The 

details can be found in the Table 4.4 below. From the table, we can found 

Swivel performs better than others in most of types, but Glove and FastText 

get bad performances. 

 

 



 Word2vec 
GloVe Swivel 

Fasttext 

CBOW Skip-gram CBOW Skip-gram 

capital-common-

countries 

62.85 70.95 61.46 70.36 9.49 52.57 

capital-world 24.49 32.97 26.04 39.67 1.88 18.13 

currency 10.57 11.24 5.03 12.58 0 3.02 

city-in-state 20.56 34.42 26.82 28.84 1.03 7.77 

family 55.71 46.90 43.10 42.62 27.62 32.86 

mean 26.52 35.06 27.98 36.35 3.44 16.84 

Table 4.4: word analogy task(semantic) results 

 

 Syntactic Task 

Finally, we have compared all the methods on word analogy (syntactic) task. 

The details can be found in the Table 4.5 below. From the table, we can found 

FastText performs better than others, but most methods like Glove, Swivel, 

word2vec-skip-gram perform very badly in all types. 

 

Word2vec 

GloVe Swivel 

FastText 

CBOW Skip-gram CBOW Skip-gram 

gram1-adjective-to-

adverb 
11.90 7.66 4.54 3.83 69.96 58.67 

gram2-opposite 11.90 7.94 3.57 3.70 77.25 43.25 

gram3-comparative 61.49 39.71 26.95 21.85 63.14 61.49 

gram4-superlative 23.19 10.18 10.08 7.86 74.50 46.37 

gram5-present-

participle 
31.34 14.39 14.11 11.84 43.09 29.92 

gram6-nationality-

adjective 
66.34 79.16 57.59 72.39 66.14 82.18 

gram7-past-tense 32.44 23.21 12.95 15.86 21.41 15.45 

gram8-plural 43.39 38.44 25.60 40.24 74.02 81.98 

gram9-plural-verbs 30.46 21.72 7.13 10.46 81.26 63.45 

mean 37.90 30.59 20.76 24.53 60.95 54.16 

Table 4.5: word analogy task(syntactic) results 



4.6. Discussion 

1. In similarity task, word2vec skip-gram performs better than others 

2. In similarity task, Glove and Swivel never win in any dataset. 

3. In analogy task (semantic), Swivel performs better than others. 

4. In analogy task(semantic), Glove and Fasttext never win in any dataset. 

5. In analogy task(syntactic), Fasttext performs better than others. 

6. In analogy task(syntactic), Glove, Swivel, word2vec(skip-gram) never win. 

5. Conclusion 

In this report, we do a survey on different word embedding method: word2vec, 

GloVe, Swivel and FastText, training on text8 dataset and making evaluation on 

these methods in both similarity tasks and analogy tasks with various evaluation 

datasets. We found that in small dataset, or the circumstance that dataset are less 

available, skip-gram performs better in catching the meaning of words and 

FastText has an outstanding performance on learning the subword information or 

structural information of words. In the future, we plan to make a comparison 

among these method on large dataset, like full Wikipedia dump. 
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