

COMP6211 Final Project Report

A comparison among different word embeddings

methods

(Survey)

Group No: 6

XIAO Wenyi LI Zheng Zeng Ziqian

Abstract

Continuous representation of words in a vector space, or word embedding, has

been proven to have better performance in natural language processing tasks such

as word similarity, analogy and parsing. Recent approach to make word vectors

could be concluded into two main parts: count-based method and predict-based

method. Both of them follow the idea that words with similar distributional

contexts should be close to each other in vector space to embed the words. In this

report, we do a survey on different word embedding method: word2vec, GloVe,

Swivel and FastText, training on text8 dataset and making evaluation on these

methods in both similarity tasks and analogy tasks with various evaluation datasets.

Keywords: word embedding, word2vec

1. Introduction

Regarding deep learning in natural language processing, especially machine

reading and comprehension, the basic idea is to encode the documents into vectors

containing full information about the text, that is to learn distributed

representations(embeddings) for words. In recent years, there are a number of

approaches to focusing on word representation in order to improve the accuracy

in reading and comprehension task. Methods which have received high attention

are word2vec [1] (Skip-gram and CBOW) and GloVe [2]. Also there are some

works, like Swivel [3] focused on optimizing the drawbacks of these two models

and FastText [4] takes consideration on the internal structure of words. These

methods outperformed other previous models on word analogy, word similarity,

and named entity recognition tasks. In this report, we do a survey on different word

embedding method: word2vec, GloVe, Swivel and FastText, training on text8

dataset and making evaluation on these methods in both similarity tasks and

analogy tasks with various evaluation datasets.

2. Models

2.1. word2vec

The basic ideas of word2vec could be described as: first, words with similar

distributional contexts ought to be close to each other in the embedding space;

second, manipulating the distributional context should lead to similar translation

in the embedding space. For example, the embedded representation of the word

queen can be translated from the representation of king, man and woman:

queen ≈ king − man + woman

In word2vec, it proposes two new model architectures for learning distributed

representations of words that try to minimize computational complexity: CBOW

architecture predicts the current word based on the context, and the Skip-gram

predicts surrounding words given the current word. Model shows in Figure 2.1.

and the basic formula shows in Figure 2.2.

Figure 2.1. Models of CBOW and Skip-gram

Figure 2.2 Basic formulas of CBOW and Skip-gram

In most training works of word embedding, people use Skip-gram negative

sampling, a method based on the Skip-gram model by minimizing the dot product

between the focus word and a randomly sampled non-context word. The goal of it

is to make an update to the embedding parameters 𝜃 to improve the following

objective function:

𝐽𝑁𝐸𝐺 = log𝑄𝜃(𝐷 = 1|𝑤𝑡 , 𝑡) + 𝑘𝔼�̃�~𝑃𝑛𝑜𝑖𝑠𝑒
[log𝑄𝜃(𝐷 = 0|�̃�, ℎ)]

It has been proved that SGNS could be regarded as implicit matrix factorization

and the cells in this matrix are the point wise mutual information (PMI) of the

respective word and context pairs as well as shifted by a global constant5 . Point-

wise mutual information (PMI) is a measure of co-occurrence between two

features, defined as follows:

pmi(x, y) = log
P(x,y)

P(x)P(y)

The SGNS model has outstanding performance on the analogy task compared with

other traditional label-tagged methods, but they poorly utilize the statistics of the

corpus since they train on separate local context windows instead of on global co-

occurrence counts. In addition, it neglects the sequence the words and contexts

occur in the text.

2.2. Global Vectors for Word Representation (GloVe)

GloVe is a global log-bilinear regression model that combines the advantages of

the two major model families in the literature: global matrix factorization, such as

latent semantic analysis (LSA) and local context window methods, such as the

Skip-gram model. This model efficiently leverages statistical information by

training only on the nonzero elements in a word-word co-occurrence matrix, rather

than on the entire sparse matrix or on individual context windows in a large corpus.

In addition, it has considered to preserve the linear directions of meaning, in other

word, the sequence of words occurring in sentence. Using stochastic gradient

descent, GloVe learns the model parameters for word embedding matrix 𝑊 and

context embedding matrix �̃� , also bias terms 𝑏𝑖 and 𝑏𝑗 . Therefore, the goal of

GloVe is to minimize the following cost function:

ℒ𝐺𝑙𝑜𝑣𝑒 = ∑ 𝑓(𝑥𝑖,𝑗)(𝑤𝑖
𝑇�̃�𝑗 − log𝑥𝑖𝑗 + 𝑏𝑖 + 𝑏𝑗)

𝑖 ,𝑗

Compared to SGNS which requires training time proportional to the whole size of

the corpus, GloVe only require training time proportional to the number of

observed co-occurrence pairs, shortening the training time.

Indeed, GloVe has outperformed other previous models on word analogy, word

similarity, and named entity recognition tasks. However, it trains only on the

observed co-occurrence statistics, while giving no penalty for placing features near

to one another whose co-occurrence has not been observed, thus resulting in poor

estimates for uncommon features.

2.3. Swivel

To handle the drawbacks of SGNS and GloVe, recently, another model for word

embedding, Submatrix-wise Vector Embedding Learner (Swivel) used a method

to combine factorization of PMI information matrix with a piecewise loss for

making use of all the information in the matrix. Like Skip-gram, it makes use of

the fact that many co-occurrence are unobserved; like GloVe, it works from co-

occurrence statistics rather than by sampling; also like both, it performs a weighted

approximate matrix factorization of the PMI between features. In Swivel, it splits

the whole co-occurrence matrix into shards after each rows and columns being

sorted in descending order of feature frequency. In this way, it can parallelize the

computation across many nodes at once. The partition process shows in Figure 2.3.

Figure 2.3 Partition to co-occurrence matrix in swivel

In training the model, swivel approximates the observed PMI of row feature 𝑖 and

feature 𝑗 with 𝑤𝑖
𝑇�̃�𝑗 . It computes the weighted squatted error between the

embedding dot product and the PMI of feature 𝑖 and feature 𝑗:

ℒ𝑖 ,𝑗 =
1

2
𝑓(𝑥𝑖𝑗)(𝑤𝑖

𝑇�̃�𝑗 − 𝑝𝑚𝑖(𝑖; 𝑗))
2

However, when it comes to an unobserved co-occurrence pair, this model solved

them simply by the requirement of avoiding over-estimating a smoothed PMI

value with a “soft hinge”, the light line in Figure 2.4.

Figure 2.4: Loss as a function of predicted value of the embedding of two words.

This loss weighted function still does not given a more principled approach:

log[1 + exp (𝑤𝑖
𝑇�̃�𝑗 − 𝑝𝑚𝑖 ∗(𝑖; 𝑗))]

2.4. FastText

Another method which considers on the subword information across words is

FastText. This character-level method, an extension of Skip-gram model, takes

consideration on the internal structure of words, thus making connection between

rare words and relatively frequent words. In this way, it allows to learn reliable

representation for rare words. This model is a modified model of word2vec, also

using local context to embed words in vector space. The details of FastText shows

as follows:

(1) Given a word 𝑤, FastText denotes it by 𝒢𝑤 ⊂ {1, … , 𝐺}, the set of 𝑛-gram

appearing in 𝑤. It represents a word by the sum of the vector representations of its

𝑛-gram, then getting the score by using the result to make dot product with the

embedding of its context.

𝑠(𝑤, 𝑐) = ∑ 𝑧𝑔
𝑇𝑣𝑐

𝑔∈𝒢𝑤

(2) For the word at position 𝑡 and the context 𝑐, the negative log-likelihood is:

log(1 + 𝑒−𝑠(𝑤𝑡 ,𝑤𝑐)) + ∑ log (1 + 𝑒𝑠(𝑤𝑡 ,𝑛))

𝑛∈𝒩𝑡,𝑐

(3) Introducing loss functionℓ: 𝑥 ⟼ log (1 + 𝑒−𝑥), the objective is:

∑ ∑ ℓ(𝑠(𝑤𝑡 , 𝑤𝑐)) + ∑ ℓ(−𝑠(𝑤𝑡 , 𝑛))

𝑛𝜖𝒩𝑡,𝑐𝑐∈𝐶𝑡

𝑇

𝑡=1

The goal is to minimize the loss in the above function.

Compared to other methods of character-level word representation, this method

does not need morphological segmenters. In other words, it does not require any

preprocessing of the data, making it fast to apply. Since it shares the

representations across words, it improves representation for rare words, linking

them to common words in structural level.

However, this approach still has some shortcomings. When represent a word as a

set of n-grams, the splitting process is relatively simple since it fixes the length of

n of n-gram. While sometimes, the representation of a fixed segment of a word is

meaningless, which cannot represent the prefixes or suffixes of the word.

3. Tasks

We evaluate the four words embedding models in two major tasks namely word

similarity task and analogy task.

3.1. Word Similarity Task

The word similarity datasets were constructed by asking human subjects to rate

the degree of semantic similarity or relatedness between two words on a

numerical scale6 . The performance is measured by the Pearson correlation of the

two word embeddings’ cosine distance and the average score given by the

participants. The Pearson correlation of two variables can be calculated as

follows:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

 where: 𝑐𝑜𝑣 is the covariance and 𝜎𝑋 is the standard deviation of 𝑋.

3.2. Analogy Task

The analogy task is to evaluate the capacity of word embeddings to make an

analogy like “man is to woman as king to queen” or “amazing is to amazingly

as apparent is to apparently”. There are two kind of analogy task, namely

semantic analogy and syntactic analogy. “man is to woman as king to queen” is

semantic analogy and amazing is to amazingly as apparent is to apparently” is

syntactic analogy.

4. Experiment

4.1. Corpus

We train models on two corpuses, a 100M small one, named text81. This corpus

is extracted from English Wikipedia Dumps.

4.2. Evaluation Datasets

In word similarity task, we do experiment on 10 evaluation datasets. The

information of 10 datasets2 are shown in table 4.1 [7]. In analogy task, we do

experiment on 14 kind of evaluation datasets, among which, 5 are semantic task

and the rest are syntactic task [8]. The information of 14 datasets is shown in

table 4.2.

No. Corpus Name Word Pairs Reference

1 EN-MC-30 30 Miller and Charles, 1991

2 EN-WS-353-SIM 203 Agirre et. al, 2009

3 EN-MTurk-287 287 Radinsky et. al, 2011

4 EN-MTurk-771 771 Halawi and Dror, 2012

5 EN-WS-353-REL 252 Agirre et. al, 2009

6 EN-MEN-TR-3k 3000 Bruni et. al, 2012

7 EN-RW-STANFORD 2034 Luong et. al, 2013

8 EN-WS-353-ALL 353 Finkelstein et. al, 2002

9 EN-YP-130 130 Yang and Powers, 2006

10 EN-RG-65 65 R and G, 1965

Table 4.1 Word Similarity Evaluation Datasets Details

1 http://mattmahoney.net/dc/textdata.html

2 http://alfonseca.org/eng/research/wordsim353.html

 http://tx.technion.ac.il/~kirar/Datasets.html
 http://www2.mta.ac.il/~gideon/mturk771.html

 http://clic.cimec.unitn.it/~elia.bruni/MEN.html

 http://www-nlp.stanford.edu/~lmthang/morphoNLM/

 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

http://mattmahoney.net/dc/textdata.html
http://alfonseca.org/eng/research/wordsim353.html

No Task Name Number Example

1
capital-common-

countries
506

london england paris

france

2 capital-world 3564
beijing china berlin

germany

3 currency 596 usa dollar europe euro

4 city-in-state 2330
phoenix arizona seattle

washington

5 family 420 boy girl brother sister

6
gram1-adjective-

to-adverb
992

amazing amazingly

apparent apparently

7 gram2-opposite 756
acceptable unacceptable

aware unaware

8 gram3-comparative 1332 bad worse big bigger

9 gram4-superlative 992 bad worst big biggest

10
gram5-present-

participle
1056

code coding dance

dancing

11
gram6-nationality-

adjective
1521

egypt egyptian china

chinese

12 gram7-past-tense 1560
dancing danced

decreasing decreased

13 gram8-plural 1332 banana bananas bird birds

14 gram9-plural-verbs 870
decrease decreases

describe describes

Table 4.2 Word Analogy Evaluation Datasets Details

4.3. Parameters Setting

The dimension of word vector is set to 300 in all experiment.

4.3.1. The parameters setting in word2vec

Parameters CBOW Skip-gram

Learning rate 0.025 0.025

Window 5 5

Negative sample 5 5

4.3.2. The parameters setting in Glove

Parameters Glove

Learning rate 0.025

window 5

alpha 0.75

4.3.3. The parameter settings in FastText

Parameters CBOW Skip-gram

Learning rate 0.025 0.025

Character n-gram 3 3

Negative sample 5 5

4.3.4. The parameter settings in Swivel

Parameters Swivel

Learning rate 1

Shard size 4096 × 4096

Window size 10

4.4. Experiment Environment and Usage

CPU：Architecture: x86_64 CPU(s): 32

Model name: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Memory：126G

During the experiment, we have found Swivel model will use more memory than

other methods, since it split the training matrix into shards and every shard is

trained in the same time.

 CPU Memory

GloVe 100% 0.1%

Word2vec-bow 100% 0.1%

Word2vec-skip-gram 100% 0.1%

Swivel 893% 8.2%

FastText-cbow 100% 1.7%

FastText-skip-gram 100% 1.7%

4.5. Experiment results

4.5.1. Comparison on Word Similarity Task

We have compared all the methods on word similarity task. The details can be

found in the Table 4.3 below. From the table, we can found word2vec-skip-gram

model has achieved advanced results in most of types against other methods.

However, Glove and Swivel never outperform other methods in all types.

word2vec

GloVe Swivel
FastText

CBOW Skip-gram CBOW Skip-gram

EN-MC-30 65.60 65.78 44.77 56.07 71.20 47.29

EN-WS-353-SIM 71.95 73.17 52.11 72.03 62.57 65.39

EN-MTurk-287 63.83 66.36 51.51 62.81 63.87 64.90

EN-MTurk-771 59.84 59.95 43.80 52.98 56.70 59.18

EN-WS-353-REL 62.64 67.11 53.93 65.14 57.99 61.95

EN-MEN-TR-3k 64.28 67.54 44.25 59.18 63.47 69.95

EN-RW-STANFORD 37.77 36.06 24.54 34.54 44.04 39.69

EN-WS-353-ALL 67.87 71.22 48.80 68.50 60.97 63.32

EN-YP-130 34.08 39.67 33.20 25.00 33.63 41.22

EN-RG-65 65.47 65.62 37.25 50.32 64.43 57.53

Table 4.3: word similarity task results among different models on text8 dataset

4.5.2. Comparison on Word Analogy Task

 Semantic Task

We have compared all the methods on word analogy (semantic) task. The

details can be found in the Table 4.4 below. From the table, we can found

Swivel performs better than others in most of types, but Glove and FastText

get bad performances.

 Word2vec
GloVe Swivel

Fasttext

CBOW Skip-gram CBOW Skip-gram

capital-common-

countries

62.85 70.95 61.46 70.36 9.49 52.57

capital-world 24.49 32.97 26.04 39.67 1.88 18.13

currency 10.57 11.24 5.03 12.58 0 3.02

city-in-state 20.56 34.42 26.82 28.84 1.03 7.77

family 55.71 46.90 43.10 42.62 27.62 32.86

mean 26.52 35.06 27.98 36.35 3.44 16.84

Table 4.4: word analogy task(semantic) results

 Syntactic Task

Finally, we have compared all the methods on word analogy (syntactic) task.

The details can be found in the Table 4.5 below. From the table, we can found

FastText performs better than others, but most methods like Glove, Swivel,

word2vec-skip-gram perform very badly in all types.

Word2vec

GloVe Swivel

FastText

CBOW Skip-gram CBOW Skip-gram

gram1-adjective-to-

adverb
11.90 7.66 4.54 3.83 69.96 58.67

gram2-opposite 11.90 7.94 3.57 3.70 77.25 43.25

gram3-comparative 61.49 39.71 26.95 21.85 63.14 61.49

gram4-superlative 23.19 10.18 10.08 7.86 74.50 46.37

gram5-present-

participle
31.34 14.39 14.11 11.84 43.09 29.92

gram6-nationality-

adjective
66.34 79.16 57.59 72.39 66.14 82.18

gram7-past-tense 32.44 23.21 12.95 15.86 21.41 15.45

gram8-plural 43.39 38.44 25.60 40.24 74.02 81.98

gram9-plural-verbs 30.46 21.72 7.13 10.46 81.26 63.45

mean 37.90 30.59 20.76 24.53 60.95 54.16

Table 4.5: word analogy task(syntactic) results

4.6. Discussion

1. In similarity task, word2vec skip-gram performs better than others

2. In similarity task, Glove and Swivel never win in any dataset.

3. In analogy task (semantic), Swivel performs better than others.

4. In analogy task(semantic), Glove and Fasttext never win in any dataset.

5. In analogy task(syntactic), Fasttext performs better than others.

6. In analogy task(syntactic), Glove, Swivel, word2vec(skip-gram) never win.

5. Conclusion

In this report, we do a survey on different word embedding method: word2vec,

GloVe, Swivel and FastText, training on text8 dataset and making evaluation on

these methods in both similarity tasks and analogy tasks with various evaluation

datasets. We found that in small dataset, or the circumstance that dataset are less

available, skip-gram performs better in catching the meaning of words and

FastText has an outstanding performance on learning the subword information or

structural information of words. In the future, we plan to make a comparison

among these method on large dataset, like full Wikipedia dump.

Reference

[1] Mikolov T, Dean J. Distributed representations of words and phrases and their

compositionality[J]. Advances in neural information processing systems, 2013.

[2] Pennington J, Socher R, Manning C D. Glove: Global Vectors for Word

Representation[C]//EMNLP. 2014, 14: 1532-43.

[3] Shazeer N, Doherty R, Evans C, et al. Swivel: Improving Embeddings by

Noticing What's Missing[J]. arXiv preprint arXiv:1602.02215, 2016.

[4] Bojanowski P, Grave E, Joulin A, et al. Enriching Word Vectors with Subword

Information[J]. arXiv preprint arXiv:1607.04606, 2016.

[5] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix

factorization. In Advances in Neural Information Processing Systems, pages

2177–2185, 2014.

[6] Miller, George A., Charles, Walter G. Contextual correlates of semantic

similarity 1991

[7] D. Yang and D. M. Powers, Verb Similarity on the Taxonomy of WordNet.

Masaryk University, 2006.

[8] Rubenstein, Herbert, Goodenough, John B. Contextual correlates of synonymy

1965

