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Abstract
In pursuit of better performance in NLP tasks, word repre-
sentation is required to consider comprehensive information
such as the semantics and syntax information. Modeling pol-
ysemy and morphology are proven to be beneficial for learn-
ing the word representation. The multi-prototype method in-
corporates the polysemy according to the context. Consid-
ering morphology using the subword method alleviate the
challenges of rare words. In this project, we simultaneously
consider polysemy and morphology in pursuit of even bet-
ter performance. Our proposed word representation method
is trained on Wikipedia subset corpora. The qualitative and
quantitative empirical results demonstrate the superiority of
our proposed method.

Introduction
Learning meaningful word representation is vital for the
majority of natural language processing (NLP) tasks. The
word representation models each word in a continuous vec-
tor space. The words with similar information should be em-
bedded nearby to each other. For instance, Spain and France
or Madrid and Paris with similar semantics meaning should
lie close in the distributed representation. In pursuit of an
effective word representation, comprehensive information,
particularly semantics (Mikolov et al. 2013a) and syntax
(Andreas and Klein 2014), are suggested to be embedded.

Embedding more structure knowledge usually leads to
more effective representations. In this project, we focus on
polysemy and morphology. One major limitation of classi-
cal word representation method is that only one single rep-
resentation is utilized for each word. However, the specific
word, e.g. Check in Figure 1, may have multiple meanings.
Mixing multiple meanings using a single representation is
clearly problematic. Recent multi-prototype method cluster
each word according to its context and learn representation
for each word cluster separately (Huang et al. 2012).

In recent years, large collections of work have been pro-
posed to learn rich word representations. However, most of
the popular models represent each word without consider-
ing the internal structure of words. In this way, each word
is presented as a distinct vector by a word vocabulary (Bo-
janowski et al. 2016). Therefore, it would be problematic to
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“Check”
1. Verify:
Customs officers have the right to check all luggage.

2. Win in Chess:
He moves his knight to check my king again

3. Cheque:
Let's get the bank check.

Figure 1: The example of polysemy for word ”Check”

infer the representations for these words that occur rarely in
the vocabulary. To model rare word better, it is reasonable to
incorporate morphological information to learn a character-
level representation. For instance, in Figure 2, each word is
analyzed into stems, root words, prefixes, and suffixes. Intu-
itively, the occurrences of un, fortunate, and ly in different
words benefit the representation of unfortunately. For fre-
quent words, the subword information enriches the repre-
sentation as well.

Figure 2: The example of morphology for word ”Unfortu-
nately”

Incorporating polysemy or morphology are proven to en-
rich word representation. Nevertheless, as far as we know,
no existing methods consider polysemy and morphology si-
multaneously. In this project, we learn representation for
each word using skip-gram model with subword informa-
tion. Based on the learned representation, we use the multi-
prototype method to distinguish multiple meanings of the
specific words followed by learning representation for each
word cluster. We verify the effectiveness of our methods us-
ing Wikipedia corpora and human similarity judgment.



Table 1: Comparison of multi-prototype methods for mod-
elling polysemy

Local
Context

Global
Context

Infer
#Cluster

Clustering
Method

Reisinger and
Mooney 2010b X

Spherical
K-Means

Huang et al.
2012 X X

Spherical
K-Means

Reisinger and
Mooney 2010a X X

Tiered
Clustering

Tian et al.
2014 X X

Iterative
Estimation

Related Work
Existing multi-prototype methods cluster each word accord-
ing to its context as shown in Figure 1. The representation
for each word cluster denotes one among multiple mean-
ings. (Reisinger and Mooney 2010b) and (Huang et al. 2012)
utilizes spherical k-means to cluster each word. Such meth-
ods suffer from two major limitations. Firstly, the number of
clusters is fixed for all words. Then, the number of clusters
is required to be tuned manually. (Huang et al. 2012) usually
performs better in that it not only considers local context but
also global context.

(Reisinger and Mooney 2010a) and (Tian et al. 2014) con-
sider the polysemy with Bayesian method. More specifi-
cally, (Reisinger and Mooney 2010a) proposed the Tiered
clustering method which models each word as Dirichlet Pro-
cess Mixture Model (DPMM). Tiered clustering enjoys great
advantages of inferring the number of clusters for each word
automatically. (Tian et al. 2014) models the clustering and
word representation learning as a uniform Bayesian model.
And it estimates the cluster and word representation itera-
tively. We compare all multi-prototype methods in Table 1.

A large body of work have investigated the morphologi-
cal representation of a word in the past. (Bojanowski et al.
2016) introduced a new approach to obtain both word-level
and character-level representation by taking into sub-word
information based on the skip-gram model. The word em-
bedding is represented as the sum of each word n-gram and
character n-gram vector representation. (Sperr, Niehues, and
Waibel 2013) present a character encoding method for learn-
ing rich word representation by taking the letter into consid-
eration. They capitalized restricted Boltzmann machines in
order to better generalize to the rare word in the machine
translation task. Furthermore, (Luong and Manning 2016)
proposed a hybrid word-character model based on the recur-
rent neural network in machine translation task in order to
address word sparsity problem for rare word. In the field of
sentiment analysis, (dos Santos and Gatti 2014) capitalized
deep convolution neural network to obtain morphology-level
information and sentence-level information for short text in
sentiment classification task. Although this kind of methods
all takes local or global context into consideration, they do
not incorporate polysemy information. The detailed compar-
ison is shown in the Table 2

Methodology
In this section, we introduce our method to learn multi-
prototype word representation combine with sub-word in-

Table 2: Comparison of word representation using sub-word
information

Local
Context

Global
Context Polysemy Method

Bojanowski
2016 X X Word2vec

Sperr
2013 X X RBM

Luong and
Manning 2016 X X RNN

Santos and
Gatti 2014 X X CNN

formation.

Skip-gram model
Let’s briefly look back the skip-gram model, which is pro-
posed in (Mikolov et al. 2013a). The idea of the skip-gram
model is to use the current central word as the input vector
to the hidden linear neurons, and predict this word appear-
ing in a constant range of context. Assuming that we have
a word vocabulary with the size of W, in this way, each of
word can be represented as a one-hot vector. More specifi-
cally, given the training corpus represented as a sequence of
words w1, w2, ..., wT , the objective of the continuous skip-
gram model is to maximize the average log likelihood:

1

T

t=1∑
T

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

where the constant c is the size of context words surrounding
wt. The probability of assigning a context word a central
word wt is parametrized using the word vectors. The basic
skip-gram formulation to define the probability p(wt+j |wt)
is the softmax function:
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)
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where vw and v
′

w are the input and output vector repre-
sentations of the central word w. Denote a scoring function
s, which is to take score that maps the pair of central word
and its context. A common choice for parametrization for
scoring function s is to take the scalar product:

s(wt, wc) = v
′

wo

T
vwI

(3)

An alternative to the softmax function is Noise Con-
trastive Estimation(NCE), which is to approximately max-
imize the log likelihood of the softmax. Negative sampling
is usually defined by (Mikolov et al. 2013b):
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wi

T
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)] (4)

The following figure shows how the conventional skip-gram
model works:

Sub-word model
From the above conventional skip-gram model, it is not sur-
prising to see that this kind of model only considers the



Figure 3: The skip-gram model: the word ”ants” is repre-
sented using it context words.

word-level information and ignores the morphological infor-
mation. In this section, we thus give the formulation of how
to integrate the sub-word information into a unified skip-
gram model by redefining a new scoring function s. Given
a central word w, we define the character-level n-gram as
gw ⊂ 1, 2, .., G and thus allocate the representation zg to the
n-grams g. Therefore, the new formulation of scoring func-
tion can be(Bojanowski et al. 2016):

s(w, c) =
∑
g∈gw

zTg vc (5)

From this equation and above analysis, we can infer that
each word is represented as a word level representation and
character level representation as well.

Learn multi-prototype representation with
sub-word information
In this section, we give our solution on how to extract pol-
ysemy information and combine sub-word information into
a unified model in order to get richer multi-prototype repre-
sentations of words. Take the following example to illustrate
how we extract multi-prototype information for each word.
Assuming that there are five words ”bank” in one document.
The first step is to extract all the context where appears the
word ”bank”, furthermore, each context will be represented
as an embedding vector. Thus, we get five context vector
presentation for one word ”bank”. Finally, the k-mean clus-
tering is performed on those context vector. The following
figure shows how it works.

Figure 4: The example of extracting multi-prototype infor-
mation

Furthermore, the following pseudocode shows how our
proposed algorithm works.

Algorithm 1 Learn multi-prototype representation with sub-
word information
Input: 1million English Wikipedia training corpus with

vocabulary size W , and denote each word as w;
Output: The learned representations of words w: wc

1: repeat
2: Learn representationws for wordw using skip-gram

model with sub-word information gs
3: Extract word2vec embedding wem for word w
4: Extract context representation wi

con, and i =
1, 2, ..n; n is the number that word w appears in the cor-
pus.

5: Capitalize the extracted context representation to do
k-means clustering in order to get updated representa-
tion wj

c , and j = 1, 2, ...m; m is the number of clusters.
6: Treat the word in wj

c as m different words, and per-
form stage 1 again.

7: return wc

Experiments
In this section, we verify the effectiveness of our proposed
method based on both qualitative and quantitative results.
Firstly, we list the nearest neighbor of example words based
on our learned word representations. We prove that our
method is capable of distinguishing multiple meanings of
the specific word. Then, we show that our proposed method
achieves improved performance in human similarity judg-
ment experiments. We also discuss how the number of clus-
ters influences the correlation with human judgments.

Implementation details

In this project, we train our word representation using the
latest Wikipedia corpora (Nov. 2016). Due to efficiency is-
sues, we randomly sample 1 million articles from Wikipedia
corpora. Across our experiments, we fix the representation
vector to be dimension 50 both in morphological and multi-
prototype information extraction. Moreover, we ignore the
words which appear less than 5 times. In terms of mult-
prototype, we consider 10 word neighbors as the context for
clustering. In the construction of sub-word n-gram dictio-
nary, we keep all n-gram with the length between 3 and 6.

Nearest Neighbors

In this part, we aim to prove that our proposed method dis-
tinguishes multiple meaning of words. For the sake of sim-
plicity, we fix two clusters for each word. Based on cosine
similarity calculated on our learned embeddings, we further
obtain the top4 nearest neighbor for each word cluster. The
nearest neighbors from the same word source are ignored.

We demonstrate nearest neighbors in Table 3. For in-
stance, Master-1 and Master-2 denotes the first and second
cluster for word Master respectively. Obviously, for words
Master, Left, and Bank, different word clusters successfully
capture different meanings of the specific word. Unfortu-
nately, bad cases exist in our results. For instance, two clus-
ters of word Band represent similar meanings related with
music.



Table 3: Top4 nearest neighbor for word clusters
Query Top4 Nearest Neighbor

Master-1 bachelor, degree, graduate, faculty
Master-2 designer, knight, lord, baron

Left-1 leaving, faced, stayed, returned
Left-2 right, front, face, behind
Bank-1 side, corner, shore, river
Bank-2 stock, fund, corporation, capital
Band-1 duo, album, guitarist, rock
Band-2 drummer, guitarist, beatles, trio

Table 4: Examples of human similarity judgement dataset

Word 1 Word 2 Human
Judgement

Cosine
Similarity

tiger cat 7.35 0.65
book paper 7.46 0.73
stock phone 1.62 0.54
stock life 0.92 -0.157

Human similarity judgement
For quantitative analysis, we utilize WS353 dataset (Finkel-
stein et al. 2001) and rare word dataset (RW) (Luong,
Socher, and Manning 2013). RW dataset is utilized to eval-
uate whether the subword information benefits the embed-
dings for rare words. The datasets provide many pairs of
words accompanied with their similarity based on human
judgement. The cosine similarity between embedded rep-
resentations is also obtained. We calculate the Spearman’s
rank correlation between human judgment and cosine simi-
larity to evaluate our word representations. We show an ex-
ample of the dataset in Table 4.

In particular, based on our learned word representation,
stock and life are negative correlated. In my view, the loss
function of n-gram model maximizes the correlation be-
tween words within a window and minimize the correlation
between random sampled words. As a result, we reckon that
the negative cosine similarity is due to the pair stock and life
almost never occur together. The correlation between stock
and life are minimized towards negative when they are ran-
domly drawn. In conclusion, we hypothesize that the nega-
tive correlation means that the pairs of word rarely occurs
together.

Figure 5 shows the Spearman’s rank correlation with re-
spect to the number of clusters. Moreover, we also compare
different baselines with and without subword information.
The baselines without subword information are denoted as
Word2Vec.

According to Figure 5, we obtain the following conclu-
sions. Firstly, on both dataset, a multi-prototype method with
2 clusters or more achieves improved performance com-
pared to the method without multi-prototype. This clearly
proves that distinguishing multiple meanings with multiple
representations is beneficial. On WS353 dataset, however,
the performance for a multi-prototype method with 5 or
10 clusters becomes inferior. We reckon that more clusters
make the training data for each word cluster more sparse,
thereby leading to decreasing performance. We hypothesize
that more clusters may be beneficial based on full scale
Wikipedia dataset.

Secondly, on WS353 dataset, the methods with and with-
out subword information perform comparable. In contrast,
on RW dataset, the representation incorporating subword in-
formation outperforms the baseline consistently. Such result
clear shows that our skip-gram model with subword infor-
mation benefits embeddings for rare words significantly.

Finally, on both datasets, the best performance is achieved
when both multi-prototype and subword information are
considered.
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Figure 5: Performance with respect to #clusters

Conclusions
In this project, we pursue a better word representation by
considering polysemy and morphology simultaneously. We
utilize the skip-gram model with subword information on
the clusters of words. Both qualitative and quantitative re-
sults verify our motivation that incorporating polysemy and
morphology simultaneously leads to an improved word rep-
resentation. In the future, we plan to infer the number
of clusters automatically. Moreover, considering multiple
meanings for stems, root words, prefixes, and suffixes is also
attractive for us.
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