COMP 3711 - Design and Analysis of Algorithms 2017 Fall Semester - Written Assignment \# 4
 Distributed: November 8, 2017 - Due: November 24, 2017

Your solutions should contain (i) your name, (ii) your student ID \#, and (iii) your email address
Some Notes:

- Please write clearly and briefly.
- Please follow the guidelines on doing your own work and avoiding plagiarism given on the class home page.
In particular don't forget to acknowledge individuals who assisted you, or sources where you found solutions. Failure to do so will be considered plagiarism.
- Please make a copy of your assignment before submitting it. If we can't find your answers, we will ask you to resubmit the copy.
- The default base for $\operatorname{logarithms}$ will be 2 , i.e., $\log n$ will mean $\log _{2} n$. If another base is intended, it will be explicitly stated, e.g., $\log _{3} n$.
- Each problem is worth 25 points.
- As in the previous assignment, you must submit both a hardcopy (A4 size) and a PDF softcopy. The hardcopyshould be submitted to the COMP3711 assignment box and the softcopy via the CASS system. The PDF can be generated by Latex, from Word or a scan of a (legible) handwritten solution.
- For any question, please contact the TA in charge of this assignment at ckoutras@connect.ust.hk.

Problem 1: Minimum Spanning Tree

Let G be a connected undirected graph with weights on the edges. Assume that all the edge weights are distinct. Let e_{i} be the edge with the i-th smallest weight. Does the MST have to contain e_{1} ? How about e_{2} and e_{3} ? If yes, give a proof; otherwise, give a counter example. You must prove your results from first principles, i.e., you cannot rely on the cut lemma or the correctness of Prim's or Kruskal's algorithm.

Problem 2: Bottleneck Spanning Tree

A Bottleneck Spanning Tree of an undirected graph $G(V, E, w)$ with weights on the edges, is a spanning tree of G, where the maximum edge weight is the minimum among all the spanning trees of G. Thus, the Bottleneck Spanning Tree T minimizes the bottleneck cost $c(T)=\max _{e \in T}\{w(e)\}$.

1. Show that every MST of G is a Bottleneck Spanning Tree.
2. Write a linear time algorithm where, given a graph $G(V, E, w)$ and an integer B , it decides whehter G has a spanning tree with bottleneck cost less or equal to B.
3. Write a linear time algorithm where, given a graph $G(V, E, w)$, it computes a Bottleneck Spanning Tree of G.

Problem 3: Road Network

Suppose a road network in the form of a graph $G(V, E, l)$, which connects a set of cities V. We assume that the network is directed and that every $\operatorname{road}(u, v) \in E$ has a non-negative length $l(u, v)$. A new road is about to be constructed, so there is a list E^{\prime} containing pairs of cities that it could connect. Every pair $(u, v) \in E^{\prime}$ has a corresponding length $l^{\prime}(u, v)$. We want to choose the pair of cities that succeeds the maximum reduction in distance between two cities $s, t \in V$. Write an efficient algorithm for this problem. Explain thoroughly the correctness and complexity of your algorithm.

Problem 4: Escape Problem

An $n \times n$ grid is an undirected graph consisting of n rows and n columns of vertices, as shown in the figure below. We denote the vertex in the i-th row and the j-th column by (i, j). All vertices in a grid have exactly four neighbors, except for the boundary vertices, which are the points (i, j) for which $i=1, i=n, j=1$, or $j=n$.
Given $m \leq n^{2}$ starting points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{m}, y_{m}\right)$ in the grid, the escape problem is to determine whether or not there are m vertex-disjoint paths, i.e., the paths don't cross one another, from the starting points to

Figure 1: Grid for the escape problem. Starting points are black, and other grid vertices are white.
any m different points on the boundary. For example, the grid in figure 1 has an escape.
(1) The problem can be seen as a max-flow problem. Consider a flow network in which vertices, as well as edges, have capacities. That is, the total positive flow entering any given vertex is subject to a capacity constraint. Show that determining the maximum flow in a network with edge and vertex capacities can be reduced to an ordinary maximum-flow problem on a flow network of comparable size. More precisely, you need to convert a network $G=(V, E)$ with capacities on both vertices and edges, to another network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with capacities on the edges only, so that the maximum flows on the two networks are the same, and the new network you construct have $V^{\prime}=$ $O(V)$ vertices and $E^{\prime}=O(E)$ edges. You can assume that the network is connected.
(2) Describe an efficient algorithm to solve the escape problem, and analyze its running time.

