
COMP 3711 – Design and Analysis of Algorithms
2017 Fall Semester – Written Assignment # 4

Distributed: November 8, 2017 – Due: November 24, 2017

Your solutions should contain (i) your name, (ii) your student ID #, and (iii)
your email address
Some Notes:

• Please write clearly and briefly.

• Please follow the guidelines on doing your own work and avoiding plagiarism
given on the class home page.
In particular don’t forget to acknowledge individuals who assisted
you, or sources where you found solutions. Failure to do so will be
considered plagiarism.

• Please make a copy of your assignment before submitting it. If we can’t
find your answers, we will ask you to resubmit the copy.

• The default base for logarithms will be 2, i.e., log n will mean log2 n. If
another base is intended, it will be explicitly stated, e.g., log3 n.

• Each problem is worth 25 points.

• As in the previous assignment, you must submit both a hardcopy (A4 size)
and a PDF softcopy. The hardcopyshould be submitted to the COMP3711
assignment box and the softcopy via the CASS system. The PDF can be
generated by Latex, from Word or a scan of a (legible) handwritten solution.

• For any question, please contact the TA in charge of this assignment at
ckoutras@connect.ust.hk.



Problem 1: Minimum Spanning Tree

Let G be a connected undirected graph with weights on the edges. Assume
that all the edge weights are distinct. Let ei be the edge with the i-th
smallest weight. Does the MST have to contain e1? How about e2 and e3?
If yes, give a proof; otherwise, give a counter example. You must prove
your results from first principles, i.e., you cannot rely on the cut lemma or
the correctness of Prim’s or Kruskal’s algorithm.

Problem 2: Bottleneck Spanning Tree

A Bottleneck Spanning Tree of an undirected graph G(V,E,w) with weights
on the edges, is a spanning tree of G, where the maximum edge weight is
the minimum among all the spanning trees of G. Thus, the Bottleneck
Spanning Tree T minimizes the bottleneck cost c(T ) = maxe∈T{w(e)}.

1. Show that every MST of G is a Bottleneck Spanning Tree.

2. Write a linear time algorithm where, given a graph G(V,E,w) and an
integer B, it decides whehter G has a spanning tree with bottleneck
cost less or equal to B.

3. Write a linear time algorithm where, given a graph G(V,E,w), it com-
putes a Bottleneck Spanning Tree of G.

Problem 3: Road Network

Suppose a road network in the form of a graph G(V,E, l), which connects
a set of cities V . We assume that the network is directed and that every
road (u, v) ∈ E has a non-negative length l(u, v). A new road is about
to be constructed, so there is a list E ′ containing pairs of cities that it
could connect. Every pair (u, v) ∈ E ′ has a corresponding length l′(u, v).
We want to choose the pair of cities that succeeds the maximum reduction
in distance between two cities s, t ∈ V . Write an efficient algorithm for
this problem. Explain thoroughly the correctness and complexity of your
algorithm.

Problem 4: Escape Problem

An n × n grid is an undirected graph consisting of n rows and n columns
of vertices, as shown in the figure below. We denote the vertex in the i-th
row and the j-th column by (i, j). All vertices in a grid have exactly four
neighbors, except for the boundary vertices, which are the points (i, j) for
which i = 1, i = n, j = 1, or j = n.

Given m ≤ n2 starting points (x1, y1), (x2, y2), · · · , (xm, ym) in the grid, the
escape problem is to determine whether or not there are m vertex-disjoint
paths, i.e., the paths don’t cross one another, from the starting points to



Figure 1: Grid for the escape problem. Starting points are black, and other grid
vertices are white.

any m different points on the boundary. For example, the grid in figure 1
has an escape.

(1) The problem can be seen as a max-flow problem. Consider a flow
network in which vertices, as well as edges, have capacities. That
is, the total positive flow entering any given vertex is subject to a
capacity constraint. Show that determining the maximum flow in a
network with edge and vertex capacities can be reduced to an ordinary
maximum-flow problem on a flow network of comparable size. More
precisely, you need to convert a network G = (V,E) with capacities
on both vertices and edges, to another network G′ = (V ′, E ′) with
capacities on the edges only, so that the maximum flows on the two
networks are the same, and the new network you construct have V ′ =
O(V ) vertices and E ′ = O(E) edges. You can assume that the network
is connected.

(2) Describe an efficient algorithm to solve the escape problem, and ana-
lyze its running time.


